探讨了大孔吸附树脂富集甘草渣中总黄酮的吸附分离特性并确定纯化工艺。通过对5种树脂进行静态吸附解吸实验,筛选出适宜的大孔树脂(AB-8和SP825)对其热力学、动力学特性进行考察,并优化分离纯化工艺条件。动力学研究表明,拟二级动力学...探讨了大孔吸附树脂富集甘草渣中总黄酮的吸附分离特性并确定纯化工艺。通过对5种树脂进行静态吸附解吸实验,筛选出适宜的大孔树脂(AB-8和SP825)对其热力学、动力学特性进行考察,并优化分离纯化工艺条件。动力学研究表明,拟二级动力学模型能很好的描述2种大孔树脂(AB-8和SP825)的整个吸附过程。热力学研究表明,2种树脂对甘草渣总黄酮的吸附符合Freundlich等温吸附方程,吸附过程是放热的,而且是物理吸附的过程。AB-8大孔树脂对甘草渣总黄酮的最佳分离纯化工艺为:甘草渣提取液上样浓度1.089 mg/m L,上样体积2 BV,上样流速3 m L/min,之后用3 BV 80%乙醇洗脱,洗脱流速1.5 m L/min,此时解吸率达91.67%,此条件纯化后总黄酮的纯度提高到53.43%。AB-8大孔树脂用于甘草渣总黄酮的纯化效果最佳。展开更多
筛选能够有效降解甘草药渣的菌株,优化菌株的纤维素酶生产工艺。从腐烂的甘草及土壤中筛选甘草药渣降解菌,结合形态学观察及18S r DNA测序确定菌株的分类地位;考察了不同因素对菌株发酵的影响;采用L9(34)正交分析法确定菌株最佳产酶条件...筛选能够有效降解甘草药渣的菌株,优化菌株的纤维素酶生产工艺。从腐烂的甘草及土壤中筛选甘草药渣降解菌,结合形态学观察及18S r DNA测序确定菌株的分类地位;考察了不同因素对菌株发酵的影响;采用L9(34)正交分析法确定菌株最佳产酶条件;利用菌株生产的纤维素酶对甘草药渣进行酶解研究。确定分离菌株为Penicillium oxalicum,命名为草酸青霉G2。正交分析结果表明,药渣含量、发酵时间对G2的发酵有显著影响(P<0.05,P<0.05);在最佳产酶工艺条件下,测得G2滤纸酶活力3.43 U/m L、内切酶活力16.89 U/m Lu;甘草药渣的酶解结果表明,G2生产的纤维素酶(G2酶)对甘草药渣的酶解效率优于商品酶。此外,甘草药渣经酶解以后,甘草总黄酮提取率明显升高。对甘草药渣降解菌的筛选以及对菌株的产酶工艺研究,旨在为合理利用甘草药渣以及生产成本低廉、性能优良的纤维素酶奠定基础。展开更多
文摘探讨了大孔吸附树脂富集甘草渣中总黄酮的吸附分离特性并确定纯化工艺。通过对5种树脂进行静态吸附解吸实验,筛选出适宜的大孔树脂(AB-8和SP825)对其热力学、动力学特性进行考察,并优化分离纯化工艺条件。动力学研究表明,拟二级动力学模型能很好的描述2种大孔树脂(AB-8和SP825)的整个吸附过程。热力学研究表明,2种树脂对甘草渣总黄酮的吸附符合Freundlich等温吸附方程,吸附过程是放热的,而且是物理吸附的过程。AB-8大孔树脂对甘草渣总黄酮的最佳分离纯化工艺为:甘草渣提取液上样浓度1.089 mg/m L,上样体积2 BV,上样流速3 m L/min,之后用3 BV 80%乙醇洗脱,洗脱流速1.5 m L/min,此时解吸率达91.67%,此条件纯化后总黄酮的纯度提高到53.43%。AB-8大孔树脂用于甘草渣总黄酮的纯化效果最佳。