In this study, the characteristic of three transformants named as B1C106-1, B1C106-2, and B1C106-3 were studied that carried three innate resistant genes Bph14, Bph15, and Xa23, and two enthetic resistant genes CrylCa...In this study, the characteristic of three transformants named as B1C106-1, B1C106-2, and B1C106-3 were studied that carried three innate resistant genes Bph14, Bph15, and Xa23, and two enthetic resistant genes CrylCa# and Bar. The five resistant genes were all verified by PCR and the two enthetic genes were identified in single copy insertion by Southern blot. At tillering stage, the CrylC and PAT (phosphinothricin acetyl transferase) protein contents in leaf, sheath, and stem of T2 generation were in the similar pattern: leaf〉stem〉sheath, and showed significant difference (P〈0.01) among three organs. The average contents of CrylC protein in plant of B1C106-1, B1C106-2, and BIC106-3 were 12.95, 6.57, and 11.30 μg g-1, respectively, and showed significant difference (P〈0.01) among them. However, the average contents of PAT in plant of B1C106-1, B1C106-2, and B1C106-3 were 28.54, 27.66, and 28.02 pg g-1, respectively, and there were no significant difference among three transformants. The glufosinate tolerable concentration of three transformants of T3 generation reached at least 6 g L-1, and the mortality of rice leaf rollers were above 97.4% in 5 days after being fed with fresh transformants' leaves. The CrylC protein toxicity was also assessed by silkworms, and the mortality of silkworms feeding mulberry leaves smeared with Cry1C protein extracts of leaves of B1 C106-1, BIC106-2, and B1 C106-3 were 90, 67.8, and 87.8%, respectively, that were positive correlation (r=0.993) with CrylC protein contents in plant of three transformants. The three transformants also maintained high resistance to brown planthopper and bacterial blight as the original version. The above results indicate the tetra-resistant rice germplasm was well-developed by pyramiding innate and enthetic resistant genes in an elite line to provide with resistances of glufosinate, rice leaf roller, brown planthopper, and bacterial blight.展开更多
The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequen...The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk展开更多
Four field trials were conducted on a farm infested with glyphosate-resistant (GR) common ragweed during 2016 and 2017 to evaluate various postemergence (POST) herbicides for the control of GR common ragweed in GR cor...Four field trials were conducted on a farm infested with glyphosate-resistant (GR) common ragweed during 2016 and 2017 to evaluate various postemergence (POST) herbicides for the control of GR common ragweed in GR corn. Dicamba at 600 g·a.i.·ha-1, dicamba/diflufenzopyr at 200 g·a.i.·ha-1, dicamba/atrazine at 1500 g·a.i.·ha-1, topramezone + atrazine at 12.5 + 500 g·a.i.·ha-1, bromoxynil + atrazine at 280 + 1500 g·a.i.·ha-1, glufosinate at 500 g·a.i.·ha-1 and 2,4-D ester at 560 g·a.i.·ha-1 provided 58% to 85% control at 4 WAA and 49% to 88% control at 8 WAA. Other herbicides evaluated controlled GR common ragweed 9% to 41%. Common ragweed density was reduced 97%, 95%, 95% and 87% and shoot dry weight was reduced 93%, 95%, 94% and 90% with bromoxynil + atrazine, dicamba, glufosinate and topramezone + atrazine applied POST in GR corn, respectively. Results show that dicamba, bromoxynil + atrazine, topramezone + atrazine and glufosinate applied POST are the most efficacious herbicides among the herbicides evaluated for the control of GR common ragweed in GR corn.展开更多
基金supported by the State Key Science and Technology Programme on Breeding of New Genetically Modified Organisms, China (2011ZX08001-003 and 2016ZX08001-003)the Open Research Fund of State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), China
文摘In this study, the characteristic of three transformants named as B1C106-1, B1C106-2, and B1C106-3 were studied that carried three innate resistant genes Bph14, Bph15, and Xa23, and two enthetic resistant genes CrylCa# and Bar. The five resistant genes were all verified by PCR and the two enthetic genes were identified in single copy insertion by Southern blot. At tillering stage, the CrylC and PAT (phosphinothricin acetyl transferase) protein contents in leaf, sheath, and stem of T2 generation were in the similar pattern: leaf〉stem〉sheath, and showed significant difference (P〈0.01) among three organs. The average contents of CrylC protein in plant of B1C106-1, B1C106-2, and BIC106-3 were 12.95, 6.57, and 11.30 μg g-1, respectively, and showed significant difference (P〈0.01) among them. However, the average contents of PAT in plant of B1C106-1, B1C106-2, and B1C106-3 were 28.54, 27.66, and 28.02 pg g-1, respectively, and there were no significant difference among three transformants. The glufosinate tolerable concentration of three transformants of T3 generation reached at least 6 g L-1, and the mortality of rice leaf rollers were above 97.4% in 5 days after being fed with fresh transformants' leaves. The CrylC protein toxicity was also assessed by silkworms, and the mortality of silkworms feeding mulberry leaves smeared with Cry1C protein extracts of leaves of B1 C106-1, BIC106-2, and B1 C106-3 were 90, 67.8, and 87.8%, respectively, that were positive correlation (r=0.993) with CrylC protein contents in plant of three transformants. The three transformants also maintained high resistance to brown planthopper and bacterial blight as the original version. The above results indicate the tetra-resistant rice germplasm was well-developed by pyramiding innate and enthetic resistant genes in an elite line to provide with resistances of glufosinate, rice leaf roller, brown planthopper, and bacterial blight.
基金funded by the China Agriculture Research System (Grant No. CARS-01)Zhejiang Science and Technology Project of China (Grant No. 2008C22086)
文摘The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk
文摘Four field trials were conducted on a farm infested with glyphosate-resistant (GR) common ragweed during 2016 and 2017 to evaluate various postemergence (POST) herbicides for the control of GR common ragweed in GR corn. Dicamba at 600 g·a.i.·ha-1, dicamba/diflufenzopyr at 200 g·a.i.·ha-1, dicamba/atrazine at 1500 g·a.i.·ha-1, topramezone + atrazine at 12.5 + 500 g·a.i.·ha-1, bromoxynil + atrazine at 280 + 1500 g·a.i.·ha-1, glufosinate at 500 g·a.i.·ha-1 and 2,4-D ester at 560 g·a.i.·ha-1 provided 58% to 85% control at 4 WAA and 49% to 88% control at 8 WAA. Other herbicides evaluated controlled GR common ragweed 9% to 41%. Common ragweed density was reduced 97%, 95%, 95% and 87% and shoot dry weight was reduced 93%, 95%, 94% and 90% with bromoxynil + atrazine, dicamba, glufosinate and topramezone + atrazine applied POST in GR corn, respectively. Results show that dicamba, bromoxynil + atrazine, topramezone + atrazine and glufosinate applied POST are the most efficacious herbicides among the herbicides evaluated for the control of GR common ragweed in GR corn.