Sublytic complement C5b-9 complexes can cause cell apoptosis, but the mechanism of glomerular mesangial cell (GMC) apoptosis mediated by these complexes has not been well defined. The activating transcription factor...Sublytic complement C5b-9 complexes can cause cell apoptosis, but the mechanism of glomerular mesangial cell (GMC) apoptosis mediated by these complexes has not been well defined. The activating transcription factor 3 (ATF3) gene is an immediate early gene for the cell to cope with a variety of stress signals and can promote apoptosis of some cells. In this study, ATF3 expression and cell apoptosis in GMCs induced by sublytic C5b-9 were measured, and then the effects of ATF3 gene over-expression or knockdown on GMC apoptosis induced by sublytic C5b-9 were examined at a fixed time. The results showed that both ATF3 expression and GMC apoptosis were markedly increased and ATF3 over-expression obviously increased sublytic C5b-9-induced GMC apoptosis, whereas ATF3 gene silencing had a significant opposite effect. Collectively, these findings indicate that upregulation of ATF3 gene expression is involved in regulating GMC apoptosis induced by sublytic C5b-9 complexes.展开更多
文摘Sublytic complement C5b-9 complexes can cause cell apoptosis, but the mechanism of glomerular mesangial cell (GMC) apoptosis mediated by these complexes has not been well defined. The activating transcription factor 3 (ATF3) gene is an immediate early gene for the cell to cope with a variety of stress signals and can promote apoptosis of some cells. In this study, ATF3 expression and cell apoptosis in GMCs induced by sublytic C5b-9 were measured, and then the effects of ATF3 gene over-expression or knockdown on GMC apoptosis induced by sublytic C5b-9 were examined at a fixed time. The results showed that both ATF3 expression and GMC apoptosis were markedly increased and ATF3 over-expression obviously increased sublytic C5b-9-induced GMC apoptosis, whereas ATF3 gene silencing had a significant opposite effect. Collectively, these findings indicate that upregulation of ATF3 gene expression is involved in regulating GMC apoptosis induced by sublytic C5b-9 complexes.