期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用优化剪枝GoogLeNet的人脸表情识别方法 被引量:14
1
作者 张宏丽 白翔宇 《计算机工程与应用》 CSCD 北大核心 2021年第19期179-188,共10页
为了提高人脸表情识别的准确率和加快处理速度,提出了一种基于优化剪枝GoogLeNet的人脸表情识别方法。利用GoogLeNet网络提取面部特征,其中Inception模块加深学习深度,并利用典型的分类器实现人脸表情分类。改进GoogLeNet网络,添加全局... 为了提高人脸表情识别的准确率和加快处理速度,提出了一种基于优化剪枝GoogLeNet的人脸表情识别方法。利用GoogLeNet网络提取面部特征,其中Inception模块加深学习深度,并利用典型的分类器实现人脸表情分类。改进GoogLeNet网络,添加全局最大池化层并保留检测目标的位置信息,以Sigmoid交叉熵作为训练目标,获得全面的人脸表情特征信息。通过剪枝算法对GoogLeNet网络进行训练、修剪低权重连接和再训练网络等操作,以简化网络结构和参数量,提高运行效率。在JAFFE、CK+和Cohn-Kanade数据集上对所提方法进行验证,实验结果表明,所提方法的识别准确率分别为83.84%、85.09%和84.87%,运行时间低于200 ms,优于对比方法,具有较好的适用性。 展开更多
关键词 剪枝算法 GoogLeNet 人脸表情识别 Inception模块 全局最大池化层 运行效率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部