期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于局优分支优化的粒子群收敛保证算法及其在电网规划中的应用 被引量:37
1
作者 金义雄 程浩忠 +1 位作者 严健勇 张丽 《中国电机工程学报》 EI CSCD 北大核心 2005年第23期12-18,共7页
总结了粒子群(PSO)算法的一些改进方法;分析并指出了PSO算法收敛困难的关键原因;提出了局优分支优化技术。该技术由5要素组成:①局部最优区域的确定;②局部最优区域的闭锁;③局部最优区域的深度搜索;④全局搜索的粒子补充;⑤迭代终止判... 总结了粒子群(PSO)算法的一些改进方法;分析并指出了PSO算法收敛困难的关键原因;提出了局优分支优化技术。该技术由5要素组成:①局部最优区域的确定;②局部最优区域的闭锁;③局部最优区域的深度搜索;④全局搜索的粒子补充;⑤迭代终止判据。还结合电网规划的特点提出了采用启发式逐步倒推模型对局部最优子群进行深度搜索的技术。在电网规划中的应用表明,该2项技术克服了PSO算法的收敛困难,提高了PSO算法的搜索效率,保证了PSO算法的全局搜索性能和局部搜索性能。同时,也为其它算法提供了新的优化思路。 展开更多
关键词 电力系统 电网规划 粒子群算法 启发式方法 局部最优解 全局最优解 分支优化
下载PDF
差分扰动的堆优化算法 被引量:6
2
作者 张新明 温少晨 刘尚旺 《计算机应用》 CSCD 北大核心 2022年第8期2519-2527,共9页
针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO--DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最... 针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO--DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.4450s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。 展开更多
关键词 优化算法 元启发式算法 堆优化算法 全局最优解 差分扰动
下载PDF
具有学习及十字交叉搜索的人工蜂群算法 被引量:4
3
作者 黄珊 高兴宝 《计算机科学与探索》 CSCD 北大核心 2017年第12期2004-2014,共11页
为克服人工蜂群算法搜索策略的局部搜索能力较弱且计算资源分布不均匀等缺点,提出了一种改进人工蜂群算法。首先对雇佣蜂和瞭望蜂,分别设计了新搜索策略,提高了在精英解和全局最好解邻域内的搜索能力;其次对依概率选取的瞭望蜂,采用局... 为克服人工蜂群算法搜索策略的局部搜索能力较弱且计算资源分布不均匀等缺点,提出了一种改进人工蜂群算法。首先对雇佣蜂和瞭望蜂,分别设计了新搜索策略,提高了在精英解和全局最好解邻域内的搜索能力;其次对依概率选取的瞭望蜂,采用局部学习策略,加快了收敛速度并增强了全局寻优能力;最后为平衡全局搜索和局部开发,利用十字交叉搜索增强瞭望蜂和全局最好解的局部搜索能力,维持了种群多样性,从而避免了早熟收敛现象。对10个标准测试函数和30个CEC2014测试函数集进行仿真实验,并与四种人工蜂群算法和两种非人工蜂群算法进行比较,结果表明改进的人工蜂群算法全局寻优能力强且提高了收敛速度和精度。 展开更多
关键词 人工蜂群算法(ABC) 十字交叉搜索 局部学习 数值优化 邻域搜索
下载PDF
一种新的蚁群算法优化的虚拟机放置策略 被引量:1
4
作者 徐胜超 《计算机测量与控制》 2021年第5期235-240,共6页
提出了一种新的蚁群算法优化的虚拟机放置策略ACA-VMP(Ant Colony Algorithm based virtual machine placement);ACA-VMP以云数据中心的总体能量消耗降低、服务质量最佳及减少虚拟机迁移次数为目标函数;根据蚁群优化算法,ACA-VMP采用了... 提出了一种新的蚁群算法优化的虚拟机放置策略ACA-VMP(Ant Colony Algorithm based virtual machine placement);ACA-VMP以云数据中心的总体能量消耗降低、服务质量最佳及减少虚拟机迁移次数为目标函数;根据蚁群优化算法,ACA-VMP采用了全局最优解和局部最优解信息素强度更新规则;全局最优解经过多次迭代后,蚂蚁路径的多次寻优,保证这个虚拟机放置优化策略的完成;局部信息素强度参数更新可以补充蚂蚁其他局部最优路径的寻找,这样也可以使得ACA-VMP虚拟机放置优化算法更快的接近全局最优解;仿真结果表明:ACA-VMP策略使得云数据中心的各类性能指标都可以改善,该实验结果对于其他企业构造节能云数据中心有很好的参考价值。 展开更多
关键词 蚁群算法 多维物理资源 信息素强度更新 虚拟机放置 全局最优解
下载PDF
改进gbest引导的人工蜂群算法
5
作者 杜振鑫 《现代计算机(中旬刊)》 2016年第6期45-47,共3页
为了进一步提高人工蜂群算法的性能,做了两点改进:(1)侦查蜂阶段采用混沌反向初始化的方式;(2)改进算法自动检测全局最优解停滞并给予高斯扰动,这样可以增强算法的进化能力。在6个标准测试函数上的实验表明,改进算法的性能优于人工蜂群... 为了进一步提高人工蜂群算法的性能,做了两点改进:(1)侦查蜂阶段采用混沌反向初始化的方式;(2)改进算法自动检测全局最优解停滞并给予高斯扰动,这样可以增强算法的进化能力。在6个标准测试函数上的实验表明,改进算法的性能优于人工蜂群算法和全局最优解引导的蜂群算法。 展开更多
关键词 人工蜂群算法 最优解 扰动 初始化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部