An experimental investigation was carried out on the damage resistance to a concen- trated quasi-static indentation force and low-velocity impact of four kinds of glass-reinforced aluminum laminates (GLARE for short...An experimental investigation was carried out on the damage resistance to a concen- trated quasi-static indentation force and low-velocity impact of four kinds of glass-reinforced aluminum laminates (GLARE for short). Compared with the experimental results of the CFRP (Carbon Fiber Reinforced Plastics) laminates, the performance of GLARE was determined. By means of concentrated quasi-static indentation force test, typical force displacement response, the maximum contact force and dent depth were received, Through drop-weight low-velocity impact tests, impact force histories, indentation depths (through a new method) and dissipated energy were obtained. The test results show that the force-displacement response of GLARE 4 laminates under the concentrated quasi-static indentation force has an obvious fiat roof and the failure is instantaneous, which are different from CFRP laminates. The indention will be visible once the impact happens. C-scan results find that there is no delamination besides the impact area after both the concentrated quasi-static indentation and low-velocity impact. The dissipated energy approximately equals the impact energy.展开更多
The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLAR...The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.展开更多
文摘An experimental investigation was carried out on the damage resistance to a concen- trated quasi-static indentation force and low-velocity impact of four kinds of glass-reinforced aluminum laminates (GLARE for short). Compared with the experimental results of the CFRP (Carbon Fiber Reinforced Plastics) laminates, the performance of GLARE was determined. By means of concentrated quasi-static indentation force test, typical force displacement response, the maximum contact force and dent depth were received, Through drop-weight low-velocity impact tests, impact force histories, indentation depths (through a new method) and dissipated energy were obtained. The test results show that the force-displacement response of GLARE 4 laminates under the concentrated quasi-static indentation force has an obvious fiat roof and the failure is instantaneous, which are different from CFRP laminates. The indention will be visible once the impact happens. C-scan results find that there is no delamination besides the impact area after both the concentrated quasi-static indentation and low-velocity impact. The dissipated energy approximately equals the impact energy.
文摘The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.