Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao For...Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is(600–2000)×10^(-3) μm^(2), and the temperature of thermal reservoir is 70–110 ℃. The formation has total geothermal resources of 13.79×10^(18) J, equivalent to 4.70×10^(8) t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×10^(4) m^(2) was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×10^(4) t of standard coal and a reduction of 15.87×10^(4) t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of "balanced production and injection in the same layer". It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China.展开更多
Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring p...Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces.In this paper,a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin,Eastern Inner Mongolia was investigated,a threedimensional geological model of a pair of production and injection well was established,and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data.The effects of flow rates,the direction of wells,injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed.The results show that considering a 30-year operation period and a production rate from 90 m^(3)/h to 110 m^(3)/h,the optimum well spacing can be increased from 225 m to 245 m,with an average value of 235 m.With the decrease of the injection temperature,the cold front of the injection water has an increasing influence on the temperature in the production well.A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability.In addition,the location of the injection well should be arranged in the downstream of the natural flow field.The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells,thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources.展开更多
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.
基金This study was supported and helped by Professor Yan Jiahong with China Petroleum Exploration and Development Research Institute,Yao Yanhua,Chief Geologist of the Hydrology Institute of PetroChina Liaohe Oilfield Company,and Dr.Kong Yanlong with the Institute of Geology and Geophysics,Chinese Academy of Sciences.
文摘Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is(600–2000)×10^(-3) μm^(2), and the temperature of thermal reservoir is 70–110 ℃. The formation has total geothermal resources of 13.79×10^(18) J, equivalent to 4.70×10^(8) t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×10^(4) m^(2) was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×10^(4) t of standard coal and a reduction of 15.87×10^(4) t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of "balanced production and injection in the same layer". It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China.
基金supported by China Geological Survey Program(DD20190128)Natural Science Foundation of Hebei Province(No.E2022202082)。
文摘Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces.In this paper,a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin,Eastern Inner Mongolia was investigated,a threedimensional geological model of a pair of production and injection well was established,and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data.The effects of flow rates,the direction of wells,injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed.The results show that considering a 30-year operation period and a production rate from 90 m^(3)/h to 110 m^(3)/h,the optimum well spacing can be increased from 225 m to 245 m,with an average value of 235 m.With the decrease of the injection temperature,the cold front of the injection water has an increasing influence on the temperature in the production well.A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability.In addition,the location of the injection well should be arranged in the downstream of the natural flow field.The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells,thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources.