期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
混合曲率空间中的几何自适应元学习方法
1
作者 高志 武玉伟 贾云得 《计算机学报》 EI CAS CSCD 北大核心 2024年第10期2289-2306,共18页
元学习通过学习先验知识,能帮助模型快速适应新任务.在适应新任务的过程中,空间几何结构与数据几何结构的匹配程度对模型泛化起着重要作用.现实世界数据具有多样的非欧几何结构,例如自然语言具有非欧层级结构,人脸图像具有非欧环状结构... 元学习通过学习先验知识,能帮助模型快速适应新任务.在适应新任务的过程中,空间几何结构与数据几何结构的匹配程度对模型泛化起着重要作用.现实世界数据具有多样的非欧几何结构,例如自然语言具有非欧层级结构,人脸图像具有非欧环状结构等.已有研究表明,真实数据的非欧结构同黎曼流形的几何结构相匹配,从理论上提供了利用黎曼流形来建模数据的可行性.本文提出了混合曲率空间(mixed-curvature space)中的几何自适应元学习方法,利用多个混合曲率空间来表示数据,并生成与数据非欧结构相匹配的黎曼几何.本文构建了多混合曲率神经网络,将混合曲率空间的几何结构表示为曲率空间的曲率、数量和维度,由此通过梯度下降过程实现对数据非欧结构的几何自适应.本文进一步引入几何初始化生成策略和几何更新策略,通过少数几步迭代,空间几何结构即可快速匹配数据非欧结构,加速了梯度下降过程.本文在小样本分类和小样本回归等任务上进行了实验验证.与欧氏空间的元学习方法相比,本文方法在小样本分类任务上取得了约3%的准确率提升,在小样本回归任务上将均方误差减少了一半,验证了本文方法的有效性. 展开更多
关键词 元学习 几何自适应 混合曲率空间 黎曼流形
下载PDF
An Adaptive Steganographic Algorithm for Point Geometry Based on Nearest Neighbors Search
2
作者 Yuan-Yu Tsai Chi-Shiang Chan 《Journal of Electronic Science and Technology》 CAS 2012年第3期220-226,共7页
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p... In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation. 展开更多
关键词 adaptation nearest neighbors search point geometry steganography.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部