大规模室外点云具有丰富的空间结构,是地理信息获取重要手段之一,由于其本身具有不规则性、复杂几何结构特征及地物尺度变化大等特征,点云分割的准确性依然是一个巨大的挑战。特别是目前大规模点云几何信息及颜色等信息利用不充分等问题...大规模室外点云具有丰富的空间结构,是地理信息获取重要手段之一,由于其本身具有不规则性、复杂几何结构特征及地物尺度变化大等特征,点云分割的准确性依然是一个巨大的挑战。特别是目前大规模点云几何信息及颜色等信息利用不充分等问题,为解决这些问题,本文提出了一种融合颜色信息和多尺度几何特征的点云语义分割方法(Integrating Color Information and Multi-Scale Geometric Features for Point Cloud Semantic Segmentation(CMGF-Net))。该方法中,分别设计了几何特征信息提取和语义特征信息提取模块。在几何特征信息提取模块中,为了充分利用点云数据的几何特征信息,设计了2个特征提取模块,分别是局部邻域的相对位置特征提取模块(RPF)和局部邻域的几何属性提取模块(LGP)。其中,RPF模块利用三维点云的空间法向信息以及相对空间距离,提取邻域点与当前点的相对位置关系;LGP模块利用点云几何属性在不同地物上有独特的表现特性,融合局部区域的几何属性特征;然后通过所设计的几何特征融合模块(LGF)将RPF模块和LGP模块所提取的特征信息进行融合得到融合后的几何特征信息。此外,为了从点云中学习到多尺度的几何特征,CMGF-Net在不同尺度的网络层中都进行了几何特征的提取,最终将所提取的几何特征与基于颜色特征提取的语义特征信息分层进行融合,以提高网络的学习能力。实验结果表明所提出的网络模型在Semantic3D数据集上的平均交并比(mIoU)和平均准确率(OA)达到了78.2%和95.0%,相较于KP Conv提高了3.6%和2.1%;在Sensat Urban数据集上达到了59.2%和93.7%,由此可见本文所提出的网络模型CMGF-Net在大规模室外场景点云分割具有较好的结果。展开更多
<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensio...<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensional advection-diffusion equation from a stable line source in the center of a wide river. A new two-parameter heteromorphic elliptic equation with a single axis of symmetry is defined. The values of heights, at the point of the maximum width and that of the centroid of the heteromorphic ellipse, are derived through mathematical analysis. Taking the compression coefficient <em>θ </em>= <em>b/a =</em><em></em><span></span> 1 as the criterion, the shape classification of H-type, Standard-type and W-type for heteromorphic ellipse have been given. The area formula, the perimeter theorem, and the radius of curvature of heteromorphic ellipses, and the geometric properties of the rotating body are subsequently proposed. An illustrative analysis shows that the inner contour curve of a heteromorphic elliptic tunnel has obvious advantages over the multiple- arc splicing cross section. This work demonstrates that the heteromorphic ellipses have extensive prospects of application in all categories of tunnels, liquid transport tanks, aircraft and submarines, bridges, buildings, furniture, and crafts. </div>展开更多
文摘大规模室外点云具有丰富的空间结构,是地理信息获取重要手段之一,由于其本身具有不规则性、复杂几何结构特征及地物尺度变化大等特征,点云分割的准确性依然是一个巨大的挑战。特别是目前大规模点云几何信息及颜色等信息利用不充分等问题,为解决这些问题,本文提出了一种融合颜色信息和多尺度几何特征的点云语义分割方法(Integrating Color Information and Multi-Scale Geometric Features for Point Cloud Semantic Segmentation(CMGF-Net))。该方法中,分别设计了几何特征信息提取和语义特征信息提取模块。在几何特征信息提取模块中,为了充分利用点云数据的几何特征信息,设计了2个特征提取模块,分别是局部邻域的相对位置特征提取模块(RPF)和局部邻域的几何属性提取模块(LGP)。其中,RPF模块利用三维点云的空间法向信息以及相对空间距离,提取邻域点与当前点的相对位置关系;LGP模块利用点云几何属性在不同地物上有独特的表现特性,融合局部区域的几何属性特征;然后通过所设计的几何特征融合模块(LGF)将RPF模块和LGP模块所提取的特征信息进行融合得到融合后的几何特征信息。此外,为了从点云中学习到多尺度的几何特征,CMGF-Net在不同尺度的网络层中都进行了几何特征的提取,最终将所提取的几何特征与基于颜色特征提取的语义特征信息分层进行融合,以提高网络的学习能力。实验结果表明所提出的网络模型在Semantic3D数据集上的平均交并比(mIoU)和平均准确率(OA)达到了78.2%和95.0%,相较于KP Conv提高了3.6%和2.1%;在Sensat Urban数据集上达到了59.2%和93.7%,由此可见本文所提出的网络模型CMGF-Net在大规模室外场景点云分割具有较好的结果。
文摘<div style="text-align:justify;"> The ellipse and the superellipse are both planar closed curves with a double axis of symmetry. Here we show the isoconcentration contour of the simplified two-dimensional advection-diffusion equation from a stable line source in the center of a wide river. A new two-parameter heteromorphic elliptic equation with a single axis of symmetry is defined. The values of heights, at the point of the maximum width and that of the centroid of the heteromorphic ellipse, are derived through mathematical analysis. Taking the compression coefficient <em>θ </em>= <em>b/a =</em><em></em><span></span> 1 as the criterion, the shape classification of H-type, Standard-type and W-type for heteromorphic ellipse have been given. The area formula, the perimeter theorem, and the radius of curvature of heteromorphic ellipses, and the geometric properties of the rotating body are subsequently proposed. An illustrative analysis shows that the inner contour curve of a heteromorphic elliptic tunnel has obvious advantages over the multiple- arc splicing cross section. This work demonstrates that the heteromorphic ellipses have extensive prospects of application in all categories of tunnels, liquid transport tanks, aircraft and submarines, bridges, buildings, furniture, and crafts. </div>