Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to ...Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.展开更多
Tectonically, the large-scale right-lateral strike-slip movement along the Red River fault zone is char-acterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fa...Tectonically, the large-scale right-lateral strike-slip movement along the Red River fault zone is char-acterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fault depression on its northern segment, and the dextral shear displacement on its central-southern segment. Research of the relations between stratum deformation and fault movement on the typical fault segments, such as Jianchuan, southeast Midu, Yuanjiang River, Yuanyang, etc. since the Miocene Epoch shows that there are two times dextral faulting dominated by normal shearing occurring along the Red River fault zone since the Miocene Epoch. The fission track dating (abbrevi-ated to FT dating, the same below) is conducted on apatite samples collected from the above fault segments and relating to these movements. Based on the measured single grain’s age and the con-fined track length, we choose the Laslet annealing model to retrieve the thermal history of the samples, and the results show that the fault zone experienced two times obvious shear displacement, one in 5.5 ± 1.5 MaBP and the other in 2.1± 0.8 MaBP. The central-southern segment sees two intensive uplifts of mountain mass in the Yuanjiang River-Yuanyang region at 3.6―3.8 MaBP and 1.6―2.3 MaBP, which correspond to the above-mentioned two dextral normal displacement events since the late Miocene Epoch.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50479048 and 50539120)the National Science Fund for Distinguished Young Scholars of China (Grant No. 50525927)
文摘Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.
基金the National Natural Science Foundation of China (Grant No.40272087)
文摘Tectonically, the large-scale right-lateral strike-slip movement along the Red River fault zone is char-acterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fault depression on its northern segment, and the dextral shear displacement on its central-southern segment. Research of the relations between stratum deformation and fault movement on the typical fault segments, such as Jianchuan, southeast Midu, Yuanjiang River, Yuanyang, etc. since the Miocene Epoch shows that there are two times dextral faulting dominated by normal shearing occurring along the Red River fault zone since the Miocene Epoch. The fission track dating (abbrevi-ated to FT dating, the same below) is conducted on apatite samples collected from the above fault segments and relating to these movements. Based on the measured single grain’s age and the con-fined track length, we choose the Laslet annealing model to retrieve the thermal history of the samples, and the results show that the fault zone experienced two times obvious shear displacement, one in 5.5 ± 1.5 MaBP and the other in 2.1± 0.8 MaBP. The central-southern segment sees two intensive uplifts of mountain mass in the Yuanjiang River-Yuanyang region at 3.6―3.8 MaBP and 1.6―2.3 MaBP, which correspond to the above-mentioned two dextral normal displacement events since the late Miocene Epoch.