To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Sh...To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.展开更多
Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust wou...Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.展开更多
On the basis of geochemical and geophysical data, the present mantle possesses three-dimensional chemical heterogeneity. It is suggested that the evolution of geochemical heterogeneity (GCH) should be divided into thr...On the basis of geochemical and geophysical data, the present mantle possesses three-dimensional chemical heterogeneity. It is suggested that the evolution of geochemical heterogeneity (GCH) should be divided into three stages. The first stage is EGCH (~1.8Ga), the second stage can be regarded as the homogenizing or transform stage around 1.8Ga, and the third stage is later geochemical heterogeneity (LGCH). This note roughly summarizes EGCH of global lead isotopes composition, and suggests that the origin of EGCH stemmed from the primary/initial chemical heterogeneity (PCH) of planetesimals accumulating on the earth.展开更多
基金supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No.XDB18010105)the Talent start-up fund of Guiyang University(2019039510821)。
文摘To unravel the geochemical heterogeneity and its origin in different terranes of North China,we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province).LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex:2516±26 Ma;Metamafic rocks:2494±31 Ma),Jiangxian Group(~2213 Ma),Zhongtiao Group(2077±29 Ma),Jiehekou Group(1998±23 Ma),and Lüliang Group(2152±52 Ma).Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex)have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups.The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lüliangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan.This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.
基金This work was jointly supported by the Knowledge-Innovation Project of the Institute of Geochemistry,the“Westerm Light”Program sponsored by the Chinese Academy of Sciencesthe National Natural Science Foundation of China grants 49833002,40273015 and 40371012.
文摘Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.
文摘On the basis of geochemical and geophysical data, the present mantle possesses three-dimensional chemical heterogeneity. It is suggested that the evolution of geochemical heterogeneity (GCH) should be divided into three stages. The first stage is EGCH (~1.8Ga), the second stage can be regarded as the homogenizing or transform stage around 1.8Ga, and the third stage is later geochemical heterogeneity (LGCH). This note roughly summarizes EGCH of global lead isotopes composition, and suggests that the origin of EGCH stemmed from the primary/initial chemical heterogeneity (PCH) of planetesimals accumulating on the earth.