针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点,本文从种群个体组织结构上着手,进行优势互补,提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle ...针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点,本文从种群个体组织结构上着手,进行优势互补,提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization,HGA–PSO).算法采用分层结构,底层由一系列的遗传算法子群组成,贡献算法的全局搜索能力;上层是由每个子群的最优个体组成的精英群,采用钳制了初始速度的粒子群算法进行精确局部搜索.文中分析论证了HGA–PSO算法具有全局收敛性,并采用7个典型高维Benchmark函数进行测试,实验结果显示该算法的优化性能显著优于其他测试算法.展开更多
在无线传感网中,传感器节点一般都由自身装配的电池供电,难以进行电量补充,因此节约电量对于无线传感网来说至关重要。为了提高无线传感网能量使用效率,延长网络生存时间,提出了一种结合遗传算法和粒子群算法优化BP神经网络的智能数据...在无线传感网中,传感器节点一般都由自身装配的电池供电,难以进行电量补充,因此节约电量对于无线传感网来说至关重要。为了提高无线传感网能量使用效率,延长网络生存时间,提出了一种结合遗传算法和粒子群算法优化BP神经网络的智能数据融合算法GAPSOBP(BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle swarm)。GAPSOBP算法将无线传感网的节点类比为BP神经网络中的神经元,通过神经网络提取无线传感网采集的感知数据并结合分簇路由对收集的传感数据进行融合处理,从而大幅减少发往汇聚节点的网络数据量。仿真结果表明,与经典LEACH算法和PSOBP算法相比,GAPSOBP算法能有效减少网络通信量,节约节点能量,显著延长网络生存时间。展开更多
为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极...为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。展开更多
文摘针对遗传算法全局搜索能力强和粒子群优化收敛速度快的特点,本文从种群个体组织结构上着手,进行优势互补,提出了一种遗传算法和粒子群优化的多子群分层混合算法(multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization,HGA–PSO).算法采用分层结构,底层由一系列的遗传算法子群组成,贡献算法的全局搜索能力;上层是由每个子群的最优个体组成的精英群,采用钳制了初始速度的粒子群算法进行精确局部搜索.文中分析论证了HGA–PSO算法具有全局收敛性,并采用7个典型高维Benchmark函数进行测试,实验结果显示该算法的优化性能显著优于其他测试算法.
文摘在无线传感网中,传感器节点一般都由自身装配的电池供电,难以进行电量补充,因此节约电量对于无线传感网来说至关重要。为了提高无线传感网能量使用效率,延长网络生存时间,提出了一种结合遗传算法和粒子群算法优化BP神经网络的智能数据融合算法GAPSOBP(BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle swarm)。GAPSOBP算法将无线传感网的节点类比为BP神经网络中的神经元,通过神经网络提取无线传感网采集的感知数据并结合分簇路由对收集的传感数据进行融合处理,从而大幅减少发往汇聚节点的网络数据量。仿真结果表明,与经典LEACH算法和PSOBP算法相比,GAPSOBP算法能有效减少网络通信量,节约节点能量,显著延长网络生存时间。
文摘为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。