为了提高编组站动态配流与静态配流协调优化算法的收敛速度,根据编组站解体方案树的构造规则,用解体序号矩阵进行解体方案编码,限制解的生成空间,避免了不必要的搜索.结合遗传算法与蚁群算法(genetic and ant algorithm,GAAA)的优势和...为了提高编组站动态配流与静态配流协调优化算法的收敛速度,根据编组站解体方案树的构造规则,用解体序号矩阵进行解体方案编码,限制解的生成空间,避免了不必要的搜索.结合遗传算法与蚁群算法(genetic and ant algorithm,GAAA)的优势和配流问题的特点,设计了以GAAA为基础的协调优化算法.用遗传算法求出若干组优化解体方案,并生成初始信息素分布,用静态配流蚁群算法筛选出最优解体方案,在此基础上生成配流方案.实例表明:对阶段到发列车数不超过25列的编组站配流问题,本文算法均能在30 s内收敛到最优解或满意解.展开更多
文摘为了提高编组站动态配流与静态配流协调优化算法的收敛速度,根据编组站解体方案树的构造规则,用解体序号矩阵进行解体方案编码,限制解的生成空间,避免了不必要的搜索.结合遗传算法与蚁群算法(genetic and ant algorithm,GAAA)的优势和配流问题的特点,设计了以GAAA为基础的协调优化算法.用遗传算法求出若干组优化解体方案,并生成初始信息素分布,用静态配流蚁群算法筛选出最优解体方案,在此基础上生成配流方案.实例表明:对阶段到发列车数不超过25列的编组站配流问题,本文算法均能在30 s内收敛到最优解或满意解.