By using a generalized Riccati transformation, we establish some new oscillation criteria which improve and generalize some known criteria in literatures.
In the teaching and researching of linear regression analysis, it is interesting and enlightening to explore how the dependent variable vector can be inner-transformed into regression coefficient estimator vector from...In the teaching and researching of linear regression analysis, it is interesting and enlightening to explore how the dependent variable vector can be inner-transformed into regression coefficient estimator vector from a visible geometrical view. As an example, the roadmap of such inner transformation is presented based on a simple multiple linear regression model in this work. By applying the matrix algorithms like singular value decomposition (SVD) and Moore-Penrose generalized matrix inverse, the dependent variable vector lands into the right space of the independent variable matrix and is metamorphosed into regression coefficient estimator vector through the three-step of inner transformation. This work explores the geometrical relationship between the dependent variable vector and regression coefficient estimator vector as well as presents a new approach for vector rotating.展开更多
文摘By using a generalized Riccati transformation, we establish some new oscillation criteria which improve and generalize some known criteria in literatures.
文摘In the teaching and researching of linear regression analysis, it is interesting and enlightening to explore how the dependent variable vector can be inner-transformed into regression coefficient estimator vector from a visible geometrical view. As an example, the roadmap of such inner transformation is presented based on a simple multiple linear regression model in this work. By applying the matrix algorithms like singular value decomposition (SVD) and Moore-Penrose generalized matrix inverse, the dependent variable vector lands into the right space of the independent variable matrix and is metamorphosed into regression coefficient estimator vector through the three-step of inner transformation. This work explores the geometrical relationship between the dependent variable vector and regression coefficient estimator vector as well as presents a new approach for vector rotating.