利用L2(R2;e-x2-y2)的一个平移算子Fh定义了差分Δhk(f)和广义连续模Ωk(f;δ),根据Hermite多项式的性质引入了一个二阶微分算子D,由此来定义函数类Wφ(r,k)(D)和KH(α).借助于参考文献中的一些结论及研究方法可以得到f∈Wt(r,kv)(D)的...利用L2(R2;e-x2-y2)的一个平移算子Fh定义了差分Δhk(f)和广义连续模Ωk(f;δ),根据Hermite多项式的性质引入了一个二阶微分算子D,由此来定义函数类Wφ(r,k)(D)和KH(α).借助于参考文献中的一些结论及研究方法可以得到f∈Wt(r,kv)(D)的充分必要条件,同时得到关于f∈KH(α),α>2的Fourier-Hermite系数cij(f)的级数∑i=0 to ∞∑j=0 to ∞cij(f)一定绝对收敛的结论.展开更多
We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality wit...We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.展开更多
文摘利用L2(R2;e-x2-y2)的一个平移算子Fh定义了差分Δhk(f)和广义连续模Ωk(f;δ),根据Hermite多项式的性质引入了一个二阶微分算子D,由此来定义函数类Wφ(r,k)(D)和KH(α).借助于参考文献中的一些结论及研究方法可以得到f∈Wt(r,kv)(D)的充分必要条件,同时得到关于f∈KH(α),α>2的Fourier-Hermite系数cij(f)的级数∑i=0 to ∞∑j=0 to ∞cij(f)一定绝对收敛的结论.
基金Supported by the Russian Foundation for Basic Research(Grant No.16-01-00308)
文摘We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.