期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进FCOS的复杂场景口罩佩戴检测算法 被引量:2
1
作者 魏驰宇 刘蓉 +1 位作者 刘明 张心月 《计算机工程与应用》 CSCD 北大核心 2023年第11期188-194,共7页
针对在复杂场景口罩佩戴检测中存在的多尺度、多角度和遮挡等问题,提出一种基于改进FCOS的复杂场景口罩佩戴检测算法。在算法的骨干网络中引入Res2Net的分组残差连接结构,提高网络对不同尺度口罩的特征提取能力,并在其中集成可变形卷积... 针对在复杂场景口罩佩戴检测中存在的多尺度、多角度和遮挡等问题,提出一种基于改进FCOS的复杂场景口罩佩戴检测算法。在算法的骨干网络中引入Res2Net的分组残差连接结构,提高网络对不同尺度口罩的特征提取能力,并在其中集成可变形卷积,拓展其对未知形状物体的建模能力;设计一种集成注意力机制的特征金字塔,为不同的特征通道赋予不同的权重,抑制无用的特征信息;根据目标口罩的相关统计特征自动地划分正负样本,提高不同尺度口罩的样本质量,并引入Generalized Focal Loss联合训练样本的分类分数和定位质量分数,提升算法性能。实验结果表明,在复杂场景下的口罩佩戴检测中,该改进算法的mAP相比于原始FCOS提高6.7个百分点,同时与一些主流的目标检测算法相比,该改进算法也具有更好的效果和鲁棒性。 展开更多
关键词 多尺度 可变形卷积 标签分配策略 generalized focal loss
下载PDF
改进的EfficientDet及直方图均衡化的工件检测算法研究 被引量:1
2
作者 石林坤 田怀文 杨玉洁 《机械科学与技术》 CSCD 北大核心 2023年第9期1445-1454,共10页
针对流水线加工作业环境下工业机器人对工件检测及定位率较低,速度慢等问题,提出基于改进的EfficientDet工件检测神经网络模型。采用EfficientNet作为主干特征提取网络,利用Triplet Attention注意力机制代替原始的SE Attention机制,同... 针对流水线加工作业环境下工业机器人对工件检测及定位率较低,速度慢等问题,提出基于改进的EfficientDet工件检测神经网络模型。采用EfficientNet作为主干特征提取网络,利用Triplet Attention注意力机制代替原始的SE Attention机制,同时借鉴循环特征融合思想,采用Recursive-BiFPN循环特征融合网络结构。针对正负样本不均等问题,采用generalized focal loss改进原始focal loss损失函数。考虑到机械加工特定生产环境,采用直方图均衡化思想对数据进行对比度提高。最后利用工业相机建立自制数据集并进行模型训练,在复杂工业生产情况下,改进后的EfficientDet在mAP上较原始网络提高6.1%,同时速度提高到72帧/s。最后实验结果表明,该算法在生产环境下能快速准确地对工件进行定位检测,为实际生产需要提供新的解决思路。 展开更多
关键词 工件检测 EfficientDet模型 Triplet Attention generalized focal loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部