期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
广义余弦二维主成分分析 被引量:6
1
作者 王肖锋 陆程昊 +1 位作者 郦金祥 刘军 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2836-2851,共16页
主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综... 主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综合考虑投影距离最大及重构误差较小的目标优化问题,提出一种广义余弦模型的目标函数.通过极大化矩阵行向量的投影距离与其可调幂的2范数之间的比值,使得其在数据降维的同时提高了鲁棒性.在此基础上提出广义余弦二维主成分分析(Generalized cosine two dimensional PCA,GC2DPCA),给出了其迭代贪婪的求解算法,并对其收敛性及正交性进行理论证明.通过选择不同的可调幂参数,GC2DPCA可应用于广泛的含离群数据的鲁棒降维.人工数据集及多个人脸数据集的实验结果表明,本文算法在重构误差、相关性及分类率等性能方面均得到了提升,具有较强的抗噪能力. 展开更多
关键词 二维主成分分析 广义余弦模型 鲁棒性 范数 降维
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部