Constant weight codes (CWCs) are an important class of codes in coding theory. Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal nonlinear CWCs over an alphabet o...Constant weight codes (CWCs) are an important class of codes in coding theory. Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal nonlinear CWCs over an alphabet of size g+1 with minimum Hamming distance 2k - 3, in which each codeword has length v and weight k. In this paper, Weil's theorem on character sum estimates is used to show that there exists a GS(2,4, v, 3) for any prime v≡1 (mod 4) and v > 13. From the coding theory point of view, an optimal nonlinear quaternary (v, 5,4) CWC exists for such a prime v.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.10471127)for the first authorby Tianyuan Mathematics Foundation of NSFC(Grant No.A0324644)Guangxi Science Foundation and the Foundation of the Education Department of Guangxi Province for the second author.
文摘Constant weight codes (CWCs) are an important class of codes in coding theory. Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal nonlinear CWCs over an alphabet of size g+1 with minimum Hamming distance 2k - 3, in which each codeword has length v and weight k. In this paper, Weil's theorem on character sum estimates is used to show that there exists a GS(2,4, v, 3) for any prime v≡1 (mod 4) and v > 13. From the coding theory point of view, an optimal nonlinear quaternary (v, 5,4) CWC exists for such a prime v.