This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain...This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.展开更多
对一类广义对称正则长波(generalized symmetrical regularized long wave,GSRLW)方程的初边值问题进行了数值研究,提出了一个三层有限差分格式,并利用离散泛函分析方法分析了该格式的二阶收敛性与无条件稳定性,格式合理地模拟了初边值...对一类广义对称正则长波(generalized symmetrical regularized long wave,GSRLW)方程的初边值问题进行了数值研究,提出了一个三层有限差分格式,并利用离散泛函分析方法分析了该格式的二阶收敛性与无条件稳定性,格式合理地模拟了初边值问题的守恒性质.数值结果表明,本文的三层格式具有二阶收敛性;与两层的守恒格式相比计算精度有了进一步的提高.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10871124)the Innovation Program of the Shanghai Municipal Education Commission,China (Grant No. 09ZZ99)
文摘This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.
基金Supported by the Special Foundation of Doctoral Unit of the Ministry of Education of China(Grant No.20070128001)Scientific Research Innovation Project of Shanghai Education Committee(No.09YZ239)the College Science Research Project of Inner Mongolia(No.NJzy08180)~~
文摘对一类广义对称正则长波(generalized symmetrical regularized long wave,GSRLW)方程的初边值问题进行了数值研究,提出了一个三层有限差分格式,并利用离散泛函分析方法分析了该格式的二阶收敛性与无条件稳定性,格式合理地模拟了初边值问题的守恒性质.数值结果表明,本文的三层格式具有二阶收敛性;与两层的守恒格式相比计算精度有了进一步的提高.