A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic att...A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic attractor. In the present paper, the sphere bound of the generalized Lorenz system is given, based on the Lyapunov function and the Lagrange multiplier method. Furthermore, we show the actual parameters and perform numerical simulations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60674059)Research Fund of University of Science and Technology Beijing, China (Grant No. 00009010)
文摘A chaotic system is bounded, and its trajectory is confined to a certain region which is called the chaotic attractor. No matter how unstable the interior of the system is, the trajectory never exceeds the chaotic attractor. In the present paper, the sphere bound of the generalized Lorenz system is given, based on the Lyapunov function and the Lagrange multiplier method. Furthermore, we show the actual parameters and perform numerical simulations.