Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transfo...Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 90510017)
文摘Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.
文摘介电特性在复合材料的电磁效应研究和材料设计中具有重要的作用。本工作在研究传统通用有效介质(GEM,General Effective Medium)公式的局限性基础上,提出了用于预测和计算颗粒填充二元复合材料等效介电特性的修正通用有效介质(MGEM,Modified General Effective Medium)公式。运用MC-FEM(Monte Carlo-Finite Element Method)方法分析计算各种参数条件下颗粒随机填充二元复合材料的等效介电特性,并与MGEM公式计算结果进行比较,验证MGEM公式的正确性和有效性。此外,还将MGEM的预测结果与部分经典理论公式的计算结果、部分文献报道的实验测量数据进行了比较。研究表明,在不同介电常数比(1/50~50)和不同体积分数(0~1)的情况下,MGEM公式预测结果与MC-FEM模型结果完全吻合,与实验测量结果基本一致,为颗粒填充二元复合材料等效介电性能分析提供了一种具有较高计算精度的理论计算方法。