We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi...We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.展开更多
以T型耦合板为研究对象,在同时考虑面内振动和面外振动条件下采用改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对其自由振动特性进行了计算分析。板结构的面内振动和面外振动位移函数表示为改进傅里叶级数形式,并引入正弦...以T型耦合板为研究对象,在同时考虑面内振动和面外振动条件下采用改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对其自由振动特性进行了计算分析。板结构的面内振动和面外振动位移函数表示为改进傅里叶级数形式,并引入正弦傅里叶级数以解决边界的不连续或跳跃现象。将位移函数的级数展开系数作为广义坐标,采用Rayleigh-Ritz方法对其进行求解。通过对不同边界条件及耦合连接情况下T型板自由振动特性进行计算,并将之与有限元法结果相比较,验证了该方法的正确性和有效性,为耦合板结构的振动控制提供可靠的理论依据。展开更多
基金supported in part by the National Science Foundation under Grants DMS-0807551, DMS-0720925, and DMS-0505473the Natural Science Foundationof China (10728101)supported in part by EPSRC grant EP/F029578/1
文摘We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.
文摘以T型耦合板为研究对象,在同时考虑面内振动和面外振动条件下采用改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对其自由振动特性进行了计算分析。板结构的面内振动和面外振动位移函数表示为改进傅里叶级数形式,并引入正弦傅里叶级数以解决边界的不连续或跳跃现象。将位移函数的级数展开系数作为广义坐标,采用Rayleigh-Ritz方法对其进行求解。通过对不同边界条件及耦合连接情况下T型板自由振动特性进行计算,并将之与有限元法结果相比较,验证了该方法的正确性和有效性,为耦合板结构的振动控制提供可靠的理论依据。