To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combina...To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this "SSR+inducible" conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.展开更多
For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n...For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.30871436,30973297,and 31171194)the National Basic Research Program(973)of China(No.2010CB945002)+1 种基金the Ministry of Education of China(No.200804220011)Shandong Provincial Science and Technology Key Program(No.2009GG10003039),China
文摘To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this "SSR+inducible" conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.
基金supported in part by National Key R&D Program of China(Grant Nos.2021ZD0111501,2021ZD0111502)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province+8 种基金the Key Laboratory of Intelligent Manufacturing Technology(Shantou University)Ministry of Education,the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917144960530)the Project of Educational Commission of Guangdong Province of China(Grant No.2017KZDXM032)the State Key Lab of Digital Manufacturing Equipment&Technology(grant number DMETKF2019020)National Natural Science Foundation of China(Grant Nos.62176147,62002369)STU Scientific Research Foundation for Talents(Grant No.NTF21001)Science and Technology Planning Project of Guangdong Province of China(Grant Nos.2019A050520001,2021A0505030072,2022A1515110660)Science and Technology Special Funds Project of Guangdong Province of China(Grant Nos.STKJ2021176,STKJ2021019)Guangdong Special Support Program for Outstanding Talents(Grant No.2021JC06X549)。
文摘For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.
基金This work was supported by a Research Startup Grant from Chongqing University of Medical Sciences (No. B9001-0228418046), the Natural Sciences Foundation of Chongqing (No. 2005BB5035), Grants-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.