The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mou...The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system. These thermal shock leads to series of surface defects such as veining/finning, metal penetration, burn-on/in, scab, rat tail, erosion etc. The use of coatings reduces the tendency of occurrence of these defects. However, the understanding of the coating, its components, characteristics and mechanism of action is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach.展开更多
Protein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics techno...Protein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics technologies, thousands of protein biomarker candidates have been developed for diverse disease states. Studies have used different types of samples for proteomics diagnosis. Samples were pretreated with appropriate techniques to increase the selectivity and sensitivity of the downstream analysis and purified to remove the contaminants. The purified samples were analyzed by several principal proteomics techniques to identify the specific protein. In this study, recent improvements in protein biomarker discovery, verification, and validation are investigated. Furthermore, the advantages, and disadvantages of conventional techniques, are discussed. Studies have used mass spectroscopy (MS) as a critical technique in the identification and quantification of candidate biomarkers. Nevertheless, after protein biomarker discovery, verification and validation have been required to reduce the false-positive rate where there have been higher number of samples. Multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and selected reaction monitoring (SRM), in combination with stable isotope-labeled internal standards, have been examined as options for biomarker verification, and enzyme-linked immunosorbent assay (ELISA) for validation.展开更多
Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designi...Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designing electrode materials has been made,the development of high-performance ZBs still remain challenges,such as the dendrite growth of zinc anode,hydrogen evolution reaction,limited electrochemical stability window,water evaporation and liquid leakage.Gel polymer electrolytes(GPEs),including hydrous GPEs with low content of active water and anhydrous GPEs without the presence of water,are proposed to avoid these problems.Furthermore,employing GPEs is conductive to fabricate flexible devices owing to the good mechanical strength.To date,most of researches focus on discovering new GPEs and exploring its application on flexible or wearable devices.Recent reviews also have outlined the polymer matrixes and advances of GPEs in various battery systems.Given this,herein,we seek to summarize the gelation mechanisms of GPEs,involving physical gel of polymer,chemical crosslinking of polymer and chemical polymerization of monomers.Peculiarly,the preparation methods are also classified.In addition,not only the features and central conundrum of GPEs are analyzed but also the corresponding strategies are discussed,contributing to design GPEs with ideal properties for high-performance ZBs.展开更多
Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its applic...Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its application field is of great significance. Aluminum titanate as glass melt erosion resistance and high temperature resistant, can be applied to high temperature pigment base. The medium temperature stability of aluminum titanate can be improved by ion doping, and magnesium stability of aluminum titanate has been widely studied. Therefore aluminium titanate is expected to become an ideal high temperature ceramic base material. In this paper, the preparation technology of magnesium-stabilized aluminum titanate powder was reviewed, and the preparation of magnesium-stabilized aluminum titanate powder by non-hydrolyzed sol-gel was mainly introduced.展开更多
文摘The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The application of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system. These thermal shock leads to series of surface defects such as veining/finning, metal penetration, burn-on/in, scab, rat tail, erosion etc. The use of coatings reduces the tendency of occurrence of these defects. However, the understanding of the coating, its components, characteristics and mechanism of action is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach.
文摘Protein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics technologies, thousands of protein biomarker candidates have been developed for diverse disease states. Studies have used different types of samples for proteomics diagnosis. Samples were pretreated with appropriate techniques to increase the selectivity and sensitivity of the downstream analysis and purified to remove the contaminants. The purified samples were analyzed by several principal proteomics techniques to identify the specific protein. In this study, recent improvements in protein biomarker discovery, verification, and validation are investigated. Furthermore, the advantages, and disadvantages of conventional techniques, are discussed. Studies have used mass spectroscopy (MS) as a critical technique in the identification and quantification of candidate biomarkers. Nevertheless, after protein biomarker discovery, verification and validation have been required to reduce the false-positive rate where there have been higher number of samples. Multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and selected reaction monitoring (SRM), in combination with stable isotope-labeled internal standards, have been examined as options for biomarker verification, and enzyme-linked immunosorbent assay (ELISA) for validation.
基金supported by the Natural Science Foundation of Henan Province(No.222300420511)Science and Technology Research Project of Henan Province(No.212102210462).
文摘Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designing electrode materials has been made,the development of high-performance ZBs still remain challenges,such as the dendrite growth of zinc anode,hydrogen evolution reaction,limited electrochemical stability window,water evaporation and liquid leakage.Gel polymer electrolytes(GPEs),including hydrous GPEs with low content of active water and anhydrous GPEs without the presence of water,are proposed to avoid these problems.Furthermore,employing GPEs is conductive to fabricate flexible devices owing to the good mechanical strength.To date,most of researches focus on discovering new GPEs and exploring its application on flexible or wearable devices.Recent reviews also have outlined the polymer matrixes and advances of GPEs in various battery systems.Given this,herein,we seek to summarize the gelation mechanisms of GPEs,involving physical gel of polymer,chemical crosslinking of polymer and chemical polymerization of monomers.Peculiarly,the preparation methods are also classified.In addition,not only the features and central conundrum of GPEs are analyzed but also the corresponding strategies are discussed,contributing to design GPEs with ideal properties for high-performance ZBs.
文摘Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its application field is of great significance. Aluminum titanate as glass melt erosion resistance and high temperature resistant, can be applied to high temperature pigment base. The medium temperature stability of aluminum titanate can be improved by ion doping, and magnesium stability of aluminum titanate has been widely studied. Therefore aluminium titanate is expected to become an ideal high temperature ceramic base material. In this paper, the preparation technology of magnesium-stabilized aluminum titanate powder was reviewed, and the preparation of magnesium-stabilized aluminum titanate powder by non-hydrolyzed sol-gel was mainly introduced.