There has been protracted historical evidence of a relative paucity in the distribution frequency of global earthquakes within the M = 3.5 to 4.0 range. We observed a similar phenomenon for all recently recorded earth...There has been protracted historical evidence of a relative paucity in the distribution frequency of global earthquakes within the M = 3.5 to 4.0 range. We observed a similar phenomenon for all recently recorded earthquakes from January 2009 through August 2013. Frequency distributions with increments of M = 0.1 verified the trough of the diminished incidence to be between M = 3.6 and 3.7 with an abrupt increase between M = 3.9 and 4.0. The calculated equivalent photon wavelength for the energies associated with M = 3.6 approaches Planck’s Length while the related time increment is the cutoff frequency for the Zero Point Fluctuation force coupled to gravity. The conspicuous congruence between Planck’s time and length and the lower than expected frequency based upon Gaussian assumptions of distribution for the discrete band of energy associated with this magnitude range of earthquakes suggests a conduit may exist between intrinsic features of Planck space-time and geophysical processes. The existence of such a connection would encourage alternative explanations for sun-seismic activities as due to solar instabilities. Instead, it may reflect influence upon both from alterations in the structure of space being traversed by the solar system as it moves through the galaxy.展开更多
Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such a...Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.展开更多
文摘There has been protracted historical evidence of a relative paucity in the distribution frequency of global earthquakes within the M = 3.5 to 4.0 range. We observed a similar phenomenon for all recently recorded earthquakes from January 2009 through August 2013. Frequency distributions with increments of M = 0.1 verified the trough of the diminished incidence to be between M = 3.6 and 3.7 with an abrupt increase between M = 3.9 and 4.0. The calculated equivalent photon wavelength for the energies associated with M = 3.6 approaches Planck’s Length while the related time increment is the cutoff frequency for the Zero Point Fluctuation force coupled to gravity. The conspicuous congruence between Planck’s time and length and the lower than expected frequency based upon Gaussian assumptions of distribution for the discrete band of energy associated with this magnitude range of earthquakes suggests a conduit may exist between intrinsic features of Planck space-time and geophysical processes. The existence of such a connection would encourage alternative explanations for sun-seismic activities as due to solar instabilities. Instead, it may reflect influence upon both from alterations in the structure of space being traversed by the solar system as it moves through the galaxy.
文摘Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.