针对电力系统扰动后频率响应计算问题,该文基于门控循环单元神经网络提出一种融合物理与数据知识的频率在线计算方法,以实现频率快速精准计算。该方法以同步电源惯性时间常数等影响频率响应的主导因素作为经典“黑箱”机器学习方法的基...针对电力系统扰动后频率响应计算问题,该文基于门控循环单元神经网络提出一种融合物理与数据知识的频率在线计算方法,以实现频率快速精准计算。该方法以同步电源惯性时间常数等影响频率响应的主导因素作为经典“黑箱”机器学习方法的基本输入特征量,并进一步在“黑箱”方法中嵌入频率响应相关物理知识,通过基本输入特征量和所嵌入物理知识形成新的输入特征量并用于模型训练。该方法能够提高小样本场景下的模型泛化能力和抗噪能力,并且增强其可解释性。采用新英格兰10机39节点系统作为仿真算例,通过与电力系统仿真器(power system simulator for engineering,PSS/E)中的仿真结果相对比,证明所提方法能够快速、准确地计算电力系统扰动后频率响应曲线。展开更多
文摘针对电力系统扰动后频率响应计算问题,该文基于门控循环单元神经网络提出一种融合物理与数据知识的频率在线计算方法,以实现频率快速精准计算。该方法以同步电源惯性时间常数等影响频率响应的主导因素作为经典“黑箱”机器学习方法的基本输入特征量,并进一步在“黑箱”方法中嵌入频率响应相关物理知识,通过基本输入特征量和所嵌入物理知识形成新的输入特征量并用于模型训练。该方法能够提高小样本场景下的模型泛化能力和抗噪能力,并且增强其可解释性。采用新英格兰10机39节点系统作为仿真算例,通过与电力系统仿真器(power system simulator for engineering,PSS/E)中的仿真结果相对比,证明所提方法能够快速、准确地计算电力系统扰动后频率响应曲线。