期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
基于门控循环单元神经网络的大气能见度临近预报技术
1
作者 魏海文 张骞 +1 位作者 柳娜 宫玉辛 《实验室研究与探索》 CAS 北大核心 2023年第1期153-158,163,共7页
针对大气能见度变化具有突变性以及复杂非线性问题,利用神经网络对复杂非线性过程拟合能力强且对映射关系变化反应速度快的特点,采用门控循环单元(GRU)神经网络为算法框架,将某省17个国家气象观测站近5年的地面能见度及相关要素数据预... 针对大气能见度变化具有突变性以及复杂非线性问题,利用神经网络对复杂非线性过程拟合能力强且对映射关系变化反应速度快的特点,采用门控循环单元(GRU)神经网络为算法框架,将某省17个国家气象观测站近5年的地面能见度及相关要素数据预处理后形成本地化能见度数据集,通过该数据集对网络进行1~4 h预报时效的训练、测试与验证。实验结果显示,基于GRU神经网络的大气能见度短临预报算法其均衡平均数(F1-score)、准确率(accuracy)和风险评分(TS-score)指标明显优于长短期记忆神经网络(LSTM)、临近K指数(KNN)与支撑向量机(SVM)大气能见度短临预报算法。 展开更多
关键词 能见度 神经网络 数据集 门控循环单元 天气预报
下载PDF
基于GRU-NN模型的短期负荷预测方法 被引量:177
2
作者 王增平 赵兵 +2 位作者 纪维佳 高欣 李晓兵 《电力系统自动化》 EI CSCD 北大核心 2019年第5期53-62,共10页
目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序... 目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序性特点的历史负荷序列,建模学习负荷数据内部动态变化规律,其输出结果与其他外部影响因素(天气、日类型等)融合为新的输入特征,使用深度神经网络进行处理,整体分析特征与负荷变化的内在联系,最后完成负荷预测。以美国某公共事业部门提供的公开数据集和中国某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.30%和97.12%,并与长短期记忆神经网络、多层感知机以及GRU神经网络方法进行对比,实验结果表明所提方法具有更高的预测精度和更快的预测速度。 展开更多
关键词 电力系统 短期负荷预测 门控循环单元 深度神经网络
下载PDF
ReLU激活函数优化研究 被引量:100
3
作者 蒋昂波 王维维 《传感器与微系统》 CSCD 2018年第2期50-52,共3页
门控循环单元(GRU)是一种改进型的长短期记忆模型(LSTM)结构,有效改善了LSTM训练耗时的缺点。在GRU的基础上,对激活函数sigmoid,tanh,ReLU等性能进行了比较和研究,详细分析了几类激活函数的优缺点,提出了一种新的激活函数双曲正切线性单... 门控循环单元(GRU)是一种改进型的长短期记忆模型(LSTM)结构,有效改善了LSTM训练耗时的缺点。在GRU的基础上,对激活函数sigmoid,tanh,ReLU等性能进行了比较和研究,详细分析了几类激活函数的优缺点,提出了一种新的激活函数双曲正切线性单元(TLU)。实验证明:新的激活函数既能显著地加快深度神经网络的训练速度,又有效降低训练误差。 展开更多
关键词 门控循环单元 神经网络 激活函数 双曲正切线性单元
下载PDF
基于门控循环单元网络与模型融合的负荷聚合体预测方法 被引量:41
4
作者 陈海文 王守相 +1 位作者 王绍敏 王丹 《电力系统自动化》 EI CSCD 北大核心 2019年第1期65-72,共8页
随着智能电表的普及,以智能电表数据为基础,可按需求灵活划分不同规模的负荷聚合体并开展预测。由于负荷聚合体规模差异较大,并与用户负荷特性关系密切,传统预测方法不再适用。为此,提出了一种基于门控循环单元(GRU)网络与模型融合的负... 随着智能电表的普及,以智能电表数据为基础,可按需求灵活划分不同规模的负荷聚合体并开展预测。由于负荷聚合体规模差异较大,并与用户负荷特性关系密切,传统预测方法不再适用。为此,提出了一种基于门控循环单元(GRU)网络与模型融合的负荷聚合体预测方法。首先,通过分布式谱聚类算法获得负荷特性相近的负荷群体,然后进行分组预测,采用GRU作为元模型,对时间序列进行动态建模,利用随机森林算法融合多个结构不同的GRU网络,实现对负荷群体的预测,最终将各群体预测值求和得到负荷聚合体预测值。算例表明,得益于分组预测、动态时间建模及模型融合技术,所述方法能充分利用不同模型的结构优势,发现时间序列动态规律,在不同时间尺度下预测精度更高,对不同规模的负荷聚合体适用性更强。 展开更多
关键词 负荷预测 谱聚类 门控循环单元 模型融合
下载PDF
深度学习在电力负荷预测中的应用 被引量:32
5
作者 张建寰 吉莹 陈立东 《自动化仪表》 CAS 2019年第8期8-12,17,共6页
针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷... 针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷预测时的效果。研究发现,将历史负荷数据作为三种深度学习预测模型的输入时,三种预测模型的负荷预测精度指标评估结果各有不同。因此,为了全面评估三种预测模型的预测效果,提出将不同时间段内的相同历史负荷数据作为预测模型输入对比各模型的负荷预测精度,从中找出最佳的预测模型。仿真结果验证了三种预测模型在电力负荷预测应用中的可行性,且发现在单输入因素时LSTM模型的预测精度相对较高。因此,在后续研究中,可以考虑以LSTM预测模型作为基础预测模型,结合更多的负荷影响因素进行改进,以提高负荷预测精度。 展开更多
关键词 深度学习 长短时记忆 门循环单元 循环神经网络 栈式自编码器 负荷预测 预测精度
下载PDF
基于多位置NWP和门控循环单元的风电功率超短期预测 被引量:29
6
作者 杨茂白 玉莹 《电力系统自动化》 EI CSCD 北大核心 2021年第1期177-183,共7页
数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率... 数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率的重要程度,利用累积贡献率提取NWP中的有效信息,将加权的NWP信息与历史功率数据作为预测模型的输入变量。然后,选取改进的灰狼寻优算法对门控循环单元的参数进行优化,建立多变量时间序列预测模型,进行风电场发电功率的超短期预测。最后,选取中国某风电场的实测数据进行算例分析,验证了所提方法的有效性和可行性。 展开更多
关键词 多位置数值天气预报 随机森林 风电功率预测 灰狼寻优算法 门控循环单元
下载PDF
基于GRU-RNN的网络入侵检测方法 被引量:29
7
作者 李俊 夏松竹 +2 位作者 兰海燕 李守政 孙建国 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2021年第6期879-884,共6页
针对数据集中少数分类用例过采样问题,本文依据网络入侵行为具有时序特征的特点,将门控循环单元记忆模块引入递归神经网络当中,提出了一种基于记忆和时序的入侵检测网络模型——GRU-RNN模型。针对原始攻击数据具有离散性且分布较广的问... 针对数据集中少数分类用例过采样问题,本文依据网络入侵行为具有时序特征的特点,将门控循环单元记忆模块引入递归神经网络当中,提出了一种基于记忆和时序的入侵检测网络模型——GRU-RNN模型。针对原始攻击数据具有离散性且分布较广的问题,对数据进行数值化及归一化的预处理操作,并对攻击的时序性进行分析,探讨门控循环单元在递归神经网络中应用于入侵检测的可行性,构建GRU-RNN网络模型,选取最优的损失函数、分类函数,提出了基于时序的不平衡学习入侵检测模型,用于检测具有时序特征的攻击行为。将模型应用在KDD数据集中进行实验测试,表明与其他不平衡学习方法相比,本模型具有更好的识别率与收敛性。 展开更多
关键词 入侵检测 时序神经网络 优化函数 门控循环单元 One-hot编码 拒绝服务攻击 深度学习
下载PDF
基于TCN-GRU模型的短期负荷预测方法 被引量:26
8
作者 郭玲 徐青山 郑乐 《电力工程技术》 北大核心 2021年第3期66-71,共6页
为了进一步提高短期负荷的预测精度,为电力系统的稳定运行提供更加有力的保障,文中提出了一种将时间卷积网络(TCN)和门限循环单元(GRU)相结合的短期负荷预测方法TCN-GRU。首先,将采集的训练数据划分为时序数据和非时序数据;其次,将时序... 为了进一步提高短期负荷的预测精度,为电力系统的稳定运行提供更加有力的保障,文中提出了一种将时间卷积网络(TCN)和门限循环单元(GRU)相结合的短期负荷预测方法TCN-GRU。首先,将采集的训练数据划分为时序数据和非时序数据;其次,将时序数据输入到TCN模型中以提取时序特征;然后,将提取出来的时序特征与非时序数据组合起来输入到GRU模型中对模型进行训练;最后,利用训练好的模型实现对短期电力负荷的预测。基于广东省佛山市某行业真实负荷数据验证了TCN-GRU模型的负荷预测能力,并通过对比多种深度学习模型的预测效果,验证该模型具有更高精度的短期负荷预测能力。 展开更多
关键词 时间卷积网络(TCN) 门限循环单元(gru) 短期负荷预测 时序特征 深度学习
下载PDF
结合GloVe和GRU的文本分类模型 被引量:25
9
作者 方炯焜 陈平华 廖文雄 《计算机工程与应用》 CSCD 北大核心 2020年第20期98-103,共6页
文本分类有着广泛的应用,对其分类算法的研究也一直备受关注。但是,传统文本分类算法普遍存在文本特征向量化维度过高、没有考虑关键词之间语义关系、训练参数过多等问题,这些都将影响到分类准确率等性能。针对这些问题,提出了一种结合... 文本分类有着广泛的应用,对其分类算法的研究也一直备受关注。但是,传统文本分类算法普遍存在文本特征向量化维度过高、没有考虑关键词之间语义关系、训练参数过多等问题,这些都将影响到分类准确率等性能。针对这些问题,提出了一种结合词向量化与GRU的文本分类算法。对文本进行预处理操作;通过GloVe进行词向量化,尽可能多地蕴含文本语义和语法信息,同时降低向量空间维度;再利用GRU神经网络模型进行训练,最大程度保留长文本中长距离词之间的语义关联。实验结果证明,该算法对提高文本分类性能有较明显的作用。 展开更多
关键词 GLOVE 门控循环单元(gru) 文本分类
下载PDF
基于PSO算法优化GRU神经网络的短期负荷预测 被引量:23
10
作者 王康 龚文杰 +1 位作者 段晓燕 张智晟 《广东电力》 2020年第4期90-96,共7页
为了实现高精度的电力系统短期负荷预测,提出了基于粒子群优化(particle swarm optimization,PSO)算法优化门控循环单元(gated recurrent unit,GRU)神经网络的电力系统短期负荷预测模型。首先建立GRU神经网络,GRU神经网络采用了门控循... 为了实现高精度的电力系统短期负荷预测,提出了基于粒子群优化(particle swarm optimization,PSO)算法优化门控循环单元(gated recurrent unit,GRU)神经网络的电力系统短期负荷预测模型。首先建立GRU神经网络,GRU神经网络采用了门控循环单元,与采用传统循环单元的传统循环神经网络相比,克服了传统循环神经网络中可能出现的梯度爆炸和梯度消失问题;继而采用具有较强全局优化能力的改进粒子群算法对GRU神经网络参数进行优化,有效提高模型的预测精度。通过实际算例仿真分析,并与传统的GRU神经网络预测模型以及反向传播(back propagation,BP)神经网络预测模型进行对比,验证了所提电力系统短期负荷预测模型具有较好的精度和稳定性。 展开更多
关键词 短期负荷预测 门控循环单元 gru神经网络 粒子群优化 预测精度
下载PDF
基于特征迁移学习的综合能源系统小样本日前电力负荷预测 被引量:24
11
作者 孙晓燕 李家钊 +2 位作者 曾博 巩敦卫 廉智勇 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第1期63-72,共10页
基于历史数据和深度学习的负荷预测已广泛应用于以电能为中心的综合能源系统中以提高预测精度,然而,当区域中出现新用户时,其历史负荷数据往往极少,此时,深度学习难以适用.针对此,本文提出基于负荷特征提取和迁移学习的预测机制.首先,... 基于历史数据和深度学习的负荷预测已广泛应用于以电能为中心的综合能源系统中以提高预测精度,然而,当区域中出现新用户时,其历史负荷数据往往极少,此时,深度学习难以适用.针对此,本文提出基于负荷特征提取和迁移学习的预测机制.首先,依据源域用户历史负荷数据,融合聚类算法和门控循环单元网络构建源域数据的特征提取和分类模型;然后,利用该模型提取当前待预测目标域小样本的特征及其类别信息,进而给出基于特征相似度和时间遗忘因子的特征融合策略;最后,依据融合特征,给出基于迁移学习和特征输入的负荷预测.将所提算法应用于卡迪夫某区域的高中和住宅用电预测中,实验结果表明了该算法在综合能源系统小样本电力负荷预测中的有效性. 展开更多
关键词 综合能源系统 日前电力负荷预测 特征提取 迁移学习 门控循环单元
下载PDF
基于门循环单元神经网络的中文分词法 被引量:22
12
作者 李雪莲 段鸿 许牧 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期237-243,共7页
目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任... 目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任务的方法,该方法可以自动学习特征,并有效建模长距离依赖信息,但是该模型较为复杂,存在模型训练和预测时间长的缺陷.针对该问题,提出了基于门循环单元(gated recurrent unit,GRU)神经网络的中文分词法,该方法继承了LSTM模型可自动学习特征、能有效建立长距离依赖信息的优点,具有与基于LSTM神经网络中文分词法相当的性能,并在速度上有显著提升. 展开更多
关键词 自然语言处理 中文分词 门循环单元 字嵌入 循环神经网络
下载PDF
基于ACGRU模型的短时交通流预测 被引量:22
13
作者 桂智明 李壮壮 郭黎敏 《计算机工程与应用》 CSCD 北大核心 2020年第21期260-265,共6页
针对现有交通流预测模型未能充分利用交通流数据的时空特征以实现准确预测的问题,提出一种结合注意力机制的卷积门控循环单元预测模型(ACGRU)。该模型利用卷积神经网络(CNN)和门控循环单元(GRU)提取交通流的时空特征,然后使用注意力机... 针对现有交通流预测模型未能充分利用交通流数据的时空特征以实现准确预测的问题,提出一种结合注意力机制的卷积门控循环单元预测模型(ACGRU)。该模型利用卷积神经网络(CNN)和门控循环单元(GRU)提取交通流的时空特征,然后使用注意力机制生成含有注意力概率分布的交通流特征表示,同时利用交通流的周相似性提取周期特征,将所有特征相互融合进行回归预测。在真实交通流数据集上的实验表明,提出的ACGRU模型具有更高的预测精度,预测误差相比其他预测模型平均降低了9%。 展开更多
关键词 智能交通 短时交通流预测 卷积神经网络 门控循环单元 时空特征
下载PDF
基于GRU-LSTM组合模型的云计算资源负载预测研究 被引量:19
14
作者 贺小伟 徐靖杰 +2 位作者 王宾 吴昊 张博文 《计算机工程》 CAS CSCD 北大核心 2022年第5期11-17,34,共8页
日益增多的应用部署在云端使得云数据中心的功耗波动剧烈,从而导致云数据中心资源利用率不平衡,高效的负载预测是解决该问题的关键技术。针对目前负载预测模型预测精度低、预测时间长的问题,建立一种基于门控循环单元(GRU)与长短期记忆(... 日益增多的应用部署在云端使得云数据中心的功耗波动剧烈,从而导致云数据中心资源利用率不平衡,高效的负载预测是解决该问题的关键技术。针对目前负载预测模型预测精度低、预测时间长的问题,建立一种基于门控循环单元(GRU)与长短期记忆(LSTM)网络的组合预测模型GRU-LSTM。该模型的网络结构包括3层,第一层采用GRU,利用GRU参数少、易收敛的特点减少模型训练时间,第二、第三层采用LSTM,结合LSTM参数多的优势提高模型的预测精度。在此基础上,对数据集作缺失值处理和标准化处理,使用随机森林算法对原始序列进行特征选择后得到一组新的序列值,将该序列值作为GRU-LSTM组合预测模型的输入,以对云计算资源进行高效预测。在集群公开数据集Cluster-trace-v2018上进行实验,结果表明,与传统的单一预测模型ARIMA、LSTM、GRU以及现有的组合预测模型ARIMA-LSTM、Refined LSTM等相比,GRU-LSTM模型预测结果的均方误差减少6~9,预测时间平均缩短约10%。 展开更多
关键词 云计算 负载预测 预测模型 门控循环单元 长短期记忆网络
下载PDF
并行多模型融合的混合神经网络超短期负荷预测 被引量:17
15
作者 庄家懿 杨国华 +3 位作者 郑豪丰 王煜东 胡瑞琨 丁旭 《电力建设》 北大核心 2020年第10期1-8,共8页
针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,G... 针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。 展开更多
关键词 超短期负荷预测 卷积神经网络(CNN) 门控循环单元(gru) 深度神经网络(DNN) 特征提取
原文传递
双通道特征融合CNN-GRU齿轮箱故障诊断 被引量:16
16
作者 张龙 甄灿壮 +3 位作者 易剑昱 蔡秉桓 徐天鹏 尹文豪 《振动与冲击》 EI CSCD 北大核心 2021年第19期239-245,294,共8页
旋转部件是否发生局部故障,关键是判断其振动信号在空间上是否出现周期性冲击以及周期大小。卷积神经网络(CNN)善于挖掘数据空间上的局部重要的信息特征,具有“端对端”的优势,从而克服了人工提取特征的缺陷;由于振动信号在时间维度上... 旋转部件是否发生局部故障,关键是判断其振动信号在空间上是否出现周期性冲击以及周期大小。卷积神经网络(CNN)善于挖掘数据空间上的局部重要的信息特征,具有“端对端”的优势,从而克服了人工提取特征的缺陷;由于振动信号在时间维度上也蕴含着丰富的信息,而长短时记忆网络(LSTM)善于从动态变化的序列数据中学习到时间上的关联性;门控递归单元(GRU)属于LSTM的变种,但相对于LSTM结构更加简洁,参数的数量更少,因此将CNN的空间处理能力和GRU时序处理能力的优势结合,提出一种双通道特征融合CNN-GRU齿轮箱故障诊断方法;即采用并列式结构令CNN与GRU双通道同时提取齿轮箱原始振动信号的故障特征,然后将双通道提取的特征向量合并成一个融合特征向量,输入到SoftMax进行故障分类。该方法可以直接从原始振动信号自适应提取到空间和时序的融合特征,实现了“端对端”的故障诊断。用齿轮实测数据和西储大学轴承数据进行验证,试验结果表明,所提方法识别准确率较高,具有实用性和可行性。 展开更多
关键词 齿轮箱 卷积神经网络(CNN) 门控递归单元(gru) 故障诊断
下载PDF
基于门控循环单元神经网络的金融时间序列预测 被引量:15
17
作者 张金磊 罗玉玲 付强 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期82-89,共8页
针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题... 针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题。本文针对金融时间序列数据存在的依赖问题,将GRU扩展应用到金融时间序列预测,提出了基于差分运算与GRU神经网络相结合的金融时间序列预测模型。该模型能够处理金融时间序列数据的复杂特征,如非线性、非平稳性和序列相关性。通过对标准普尔(S&P)500股票指数的调整后收盘价进行预测,实验结果表明,所提出的方案能够提高GRU神经网络的泛化能力和预测精度,并且与传统预测模型相比该模型对金融时间序列的预测拥有更好的预测效果和相对较低的计算开销。 展开更多
关键词 循环神经网络 门控循环单元 差分运算 金融时间序列预测 深度学习
下载PDF
基于麻雀搜索优化的Attention-GRU短期负荷预测方法 被引量:14
18
作者 刘可真 阮俊枭 +1 位作者 赵现平 刘果 《电力系统及其自动化学报》 CSCD 北大核心 2022年第4期99-106,共8页
针对短期电力负荷预测目前存在的难点与问题,提出了一种基于麻雀搜索优化的注意力门控循环单元预测方法。首先,应用注意力机制对输入序列进行权重分配;然后,输入门控循环单元组合网络对内部特征进行学习,并输出预测时间负荷值;最后,使... 针对短期电力负荷预测目前存在的难点与问题,提出了一种基于麻雀搜索优化的注意力门控循环单元预测方法。首先,应用注意力机制对输入序列进行权重分配;然后,输入门控循环单元组合网络对内部特征进行学习,并输出预测时间负荷值;最后,使用麻雀搜索算法对网络超参数进行组合优化,以验证集损失最小为目标函数获取最优化网络结构超参数。该方法实现了原始输入序列结构权重分配与组合网络超参数的最优化。算例分析表明,所提方法比传统预测模型精确度更高。 展开更多
关键词 短期负荷预测 注意力机制 权重分配 麻雀搜索算法 门控循环单元
下载PDF
Emphasizing Essential Words for Sentiment Classification Based onRecurrent Neural Networks 被引量:13
19
作者 Fei Hu Li Li +2 位作者 Zi-Li Zhang Jing-Yuan Wang Xiao-Fei Xu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期785-795,共11页
With the explosion of online communication and publication, texts become obtainable via forums, chat messages, blogs, book reviews and movie reviews. Usually, these texts are much short and noisy without sufficient st... With the explosion of online communication and publication, texts become obtainable via forums, chat messages, blogs, book reviews and movie reviews. Usually, these texts are much short and noisy without sufficient statistical signals and enough information for a good semantic analysis. Traditional natural language processing methods such as Bow-of-Word (BOW) based probabilistic latent semantic models fail to achieve high performance due to the short text environment. Recent researches have focused on the correlations between words, i.e., term dependencies, which could be helpful for mining latent semantics hidden in short texts and help people to understand them. Long short-term memory (LSTM) network can capture term dependencies and is able to remember the information for long periods of time. LSTM has been widely used and has obtained promising results in variants of problems of understanding latent semantics of texts. At the same time, by analyzing the texts, we find that a number of keywords contribute greatly to the semantics of the texts. In this paper, we establish a keyword vocabulary and propose an LSTM-based model that is sensitive to the words in the vocabulary; hence, the keywords leverage the semantics of the full document. The proposed model is evaluated in a short-text sentiment analysis task on two datasets: IMDB and SemEval-2016, respectively. Experimental results demonstrate that our model outperforms the baseline LSTM by 1%similar to 2% in terms of accuracy and is effective with significant performance enhancement over several non-recurrent neural network latent semantic models (especially in dealing with short texts). We also incorporate the idea into a variant of LSTM named the gated recurrent unit (GRU) model and achieve good performance, which proves that our method is general enough to improve different deep learning models. 展开更多
关键词 short text understanding long short-term memory (LSTM) gated recurrent unit (gru) sentiment classification deep learning
原文传递
基于MRSVD-GRU的混合三端特高压直流输电线路单极接地故障定位方法 被引量:10
20
作者 李志川 兰生 魏柯 《电气技术》 2023年第3期1-8,63,共9页
针对换相换流器(LCC)-模块化多电平换流器(MMC)混合三端特高压直流输电线路因结构复杂度提高而造成的故障定位困难问题,提出一种基于多分辨奇异值分解(MRSVD)-门控循环单元(GRU)神经网络的特高压直流输电线路单极接地故障定位方法。首先... 针对换相换流器(LCC)-模块化多电平换流器(MMC)混合三端特高压直流输电线路因结构复杂度提高而造成的故障定位困难问题,提出一种基于多分辨奇异值分解(MRSVD)-门控循环单元(GRU)神经网络的特高压直流输电线路单极接地故障定位方法。首先,对故障线路进行选线,判断故障发生线路区段。然后,通过MRSVD对双端故障电压波形进行逐层分解和波形重构。最终,搭建GRU神经网络模型进行故障定位,模型参数通过粒子群优化(PSO)算法进行设定,提升其故障定位准确性。利用PSCAD/EMTDC软件搭建±800kV LCC-MMC混合三端特高压直流输电系统,对不同过渡电阻值、不同故障距离进行仿真。仿真结果证明,所提出的故障定位方法准确度高,能够为混合三端特高压直流输电线路单极接地故障定位提供新的解决方案。 展开更多
关键词 换相换流器(LCC) 模块化多电平换流器(MMC) 故障定位 多分辨奇异值分解(MRSVD) 门控循环单元(gru)
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部