针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,G...针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。展开更多
With the explosion of online communication and publication, texts become obtainable via forums, chat messages, blogs, book reviews and movie reviews. Usually, these texts are much short and noisy without sufficient st...With the explosion of online communication and publication, texts become obtainable via forums, chat messages, blogs, book reviews and movie reviews. Usually, these texts are much short and noisy without sufficient statistical signals and enough information for a good semantic analysis. Traditional natural language processing methods such as Bow-of-Word (BOW) based probabilistic latent semantic models fail to achieve high performance due to the short text environment. Recent researches have focused on the correlations between words, i.e., term dependencies, which could be helpful for mining latent semantics hidden in short texts and help people to understand them. Long short-term memory (LSTM) network can capture term dependencies and is able to remember the information for long periods of time. LSTM has been widely used and has obtained promising results in variants of problems of understanding latent semantics of texts. At the same time, by analyzing the texts, we find that a number of keywords contribute greatly to the semantics of the texts. In this paper, we establish a keyword vocabulary and propose an LSTM-based model that is sensitive to the words in the vocabulary; hence, the keywords leverage the semantics of the full document. The proposed model is evaluated in a short-text sentiment analysis task on two datasets: IMDB and SemEval-2016, respectively. Experimental results demonstrate that our model outperforms the baseline LSTM by 1%similar to 2% in terms of accuracy and is effective with significant performance enhancement over several non-recurrent neural network latent semantic models (especially in dealing with short texts). We also incorporate the idea into a variant of LSTM named the gated recurrent unit (GRU) model and achieve good performance, which proves that our method is general enough to improve different deep learning models.展开更多
文摘针对输入数据特征多时负荷预测模型精度提升难的问题,文章提出一种并行多模型融合的混合神经网络超短期负荷预测方法。将卷积神经网络(convolutional neural network,CNN)与门控循环单元神经网络(gated recurrent unit neural network,GRU-NN)并行,分别提取局部特征与时序特征,将2个网络结构的输出拼接并输入深度神经网络(deep neural network,DNN),由DNN进行超短期负荷预测。最后应用负荷与温度数据进行预测实验,结果表明相比于GRUNN网络结构、长短期记忆(long short term memory,LSTM)网络结构、串行CNN-LSTM网络结构与串行CNN-GRU网络结构,所提方法具有更好的预测性能。
文摘With the explosion of online communication and publication, texts become obtainable via forums, chat messages, blogs, book reviews and movie reviews. Usually, these texts are much short and noisy without sufficient statistical signals and enough information for a good semantic analysis. Traditional natural language processing methods such as Bow-of-Word (BOW) based probabilistic latent semantic models fail to achieve high performance due to the short text environment. Recent researches have focused on the correlations between words, i.e., term dependencies, which could be helpful for mining latent semantics hidden in short texts and help people to understand them. Long short-term memory (LSTM) network can capture term dependencies and is able to remember the information for long periods of time. LSTM has been widely used and has obtained promising results in variants of problems of understanding latent semantics of texts. At the same time, by analyzing the texts, we find that a number of keywords contribute greatly to the semantics of the texts. In this paper, we establish a keyword vocabulary and propose an LSTM-based model that is sensitive to the words in the vocabulary; hence, the keywords leverage the semantics of the full document. The proposed model is evaluated in a short-text sentiment analysis task on two datasets: IMDB and SemEval-2016, respectively. Experimental results demonstrate that our model outperforms the baseline LSTM by 1%similar to 2% in terms of accuracy and is effective with significant performance enhancement over several non-recurrent neural network latent semantic models (especially in dealing with short texts). We also incorporate the idea into a variant of LSTM named the gated recurrent unit (GRU) model and achieve good performance, which proves that our method is general enough to improve different deep learning models.