现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分...现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分析模型。首先,将评论和方面信息拼接为句子对输入BERT模型,通过BERT的自注意力机制建立评论与方面信息的联系;其次,构建门控卷积网络(gated convolutional neural network,GCNN)对BERT所有隐藏层输出的词向量矩阵进行特征提取,并将提取的特征进行最大池化、拼接得到特征序列;然后,使用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络对特征序列进行融合,编码BERT不同隐藏层的信息;最后,引入注意力机制,根据特征与方面信息的相关程度赋予权值。在公开的SemEval2014 Task4评论数据集上的实验结果表明:所提模型在准确率和F 1值两种评价指标上均优于BERT、CapsBERT(capsule BERT)、BERT-PT(BERT post train)、BERT-LSTM(BERT long and short-term memory)等对比模型,具有较好的情感分类效果。展开更多
文摘现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分析模型。首先,将评论和方面信息拼接为句子对输入BERT模型,通过BERT的自注意力机制建立评论与方面信息的联系;其次,构建门控卷积网络(gated convolutional neural network,GCNN)对BERT所有隐藏层输出的词向量矩阵进行特征提取,并将提取的特征进行最大池化、拼接得到特征序列;然后,使用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络对特征序列进行融合,编码BERT不同隐藏层的信息;最后,引入注意力机制,根据特征与方面信息的相关程度赋予权值。在公开的SemEval2014 Task4评论数据集上的实验结果表明:所提模型在准确率和F 1值两种评价指标上均优于BERT、CapsBERT(capsule BERT)、BERT-PT(BERT post train)、BERT-LSTM(BERT long and short-term memory)等对比模型,具有较好的情感分类效果。