期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于改进UNETR++的肝脏分割
1
作者 马力 王骏 +1 位作者 梁羡和 郝金华 《计算机系统应用》 2024年第2期246-252,共7页
肝脏MRI影像的脂肪定量标准化过程中常需要对肝脏感兴趣区域进行手工采样,但手工采样策略耗时且结果多变.基于深度学习方法的全肝分割与手工勾勒的感兴趣区域在进行脂肪定量分析时,变异性误差和不确定性程度更低,性能更优越.在进行全肝... 肝脏MRI影像的脂肪定量标准化过程中常需要对肝脏感兴趣区域进行手工采样,但手工采样策略耗时且结果多变.基于深度学习方法的全肝分割与手工勾勒的感兴趣区域在进行脂肪定量分析时,变异性误差和不确定性程度更低,性能更优越.在进行全肝分割任务时,为了提升分割性能,本文在UNETR++模型的基础上,进行改进.该方法融合卷积神经网络和Transformer结构各自的优点,增加卷积结构分支用于补足局部特征,同时引入门控注意力机制,抑制不相关的背景信息,使模型更为突出分割区域的显著特征.相比于UNETR++及其他分割模型,改进的方法具有更优的DCS及HD95指标. 展开更多
关键词 全肝分割 卷积神经网络 门控注意力 UNETR++
下载PDF
面向语法加权图文本的方面情感三元组抽取
2
作者 韩虎 孟甜甜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期409-418,共10页
方面情感三元组抽取包括方面抽取、意见抽取和方面情感分类3项任务,以管道方式解决该任务的研究方法无法利用元素之间的交互信息,同时也会造成错误传播和冗余训练。基于此,提出一种基于门控注意力和加权图文本的方面情感三元组抽取方法... 方面情感三元组抽取包括方面抽取、意见抽取和方面情感分类3项任务,以管道方式解决该任务的研究方法无法利用元素之间的交互信息,同时也会造成错误传播和冗余训练。基于此,提出一种基于门控注意力和加权图文本的方面情感三元组抽取方法。采用双向长短时记忆网络学习句子的序列特征表示;利用门控注意力单元学习单词之间的线性联系;利用语法距离加权图卷积网络增强三元组元素之间的交互;利用网格标记推理策略预测三元组。在4个公开数据集上进行实验,结果表明:所提方法可以有效增强三元组元素之间的交互,提高三元组抽取的准确率;同时,所提方法的F1值分别为57.94%、70.54%、61.95%和67.66%,与基准模型相比均有所提高。 展开更多
关键词 三元组抽取 门控注意力 加权图文本 双向长短时记忆网络 网格标记
下载PDF
改进Segformer的前列腺超声图像语义分割算法
3
作者 石勇涛 柳迪 +2 位作者 高超 杜威 邱康齐 《现代电子技术》 北大核心 2024年第15期65-72,共8页
前列腺超声图像在临床中的准确分割对后续诊断具有重要影响。因此,通过深度学习辅助实现前列腺边界的快速、准确分割非常必要。为此,文中提出了一种改进的前列腺分割网络(DA-Segformer)。利用Transformer、深监督和注意力机制,快速准确... 前列腺超声图像在临床中的准确分割对后续诊断具有重要影响。因此,通过深度学习辅助实现前列腺边界的快速、准确分割非常必要。为此,文中提出了一种改进的前列腺分割网络(DA-Segformer)。利用Transformer、深监督和注意力机制,快速准确地分割前列腺超声图像。引入MAG模块提高网络对特征图和像素关联性的理解能力,以及对前景像素的敏感度。采用深监督策略,在解码过程中引入损失函数,优化梯度传播,增强网络对关键特征的学习表征能力。实验结果显示,在前列腺超声图像数据集上,DA-Segformer模型的mIoU、Dice系数、准确率和召回率等指标均优于其他主流语义分割模型。该方法有效解决了前列腺超声图像手工分割的难题,为临床诊断提供了有价值的计算机辅助工具。 展开更多
关键词 医学图像分割 超声图像分割 TRANSFORMER 门控注意力 深监督 扩张卷积 梯度下降 多尺度特征
下载PDF
基于门控注意力的双通道情感分析及应用
4
作者 魏龙 胡建鹏 张庚 《计算机工程与应用》 CSCD 北大核心 2023年第10期134-141,共8页
针对传统的基于深度学习的文本情感分类模型特征抽取不全面以及不能区分一词多义的问题,提出一种基于门控注意力的双通道情感分类模型BGA-DNet。该模型使用BERT预训练模型对文本数据进行处理,然后经过双通道网络提取文本特征,其中通道... 针对传统的基于深度学习的文本情感分类模型特征抽取不全面以及不能区分一词多义的问题,提出一种基于门控注意力的双通道情感分类模型BGA-DNet。该模型使用BERT预训练模型对文本数据进行处理,然后经过双通道网络提取文本特征,其中通道一利用TextCNN提取局部特征,通道二利用BiLSTM-Attention提取全局特征。同时引入门控注意力单元将部分无用的注意力信息过滤掉,并结合残差网络思想,确保双通道的输出在网络学习到饱和状态下保留原始编码信息。BGA-DNet在公开的酒店评论和餐饮评论两个数据集上进行实验评估,并与最新的情感分类方法进行对比,分别取得了准确率94.09%和91.82%的最佳效果。最后将BGA-DNet模型应用到真实的学生实验心得体会评价任务上,与其他方法相比准确率和F1值也是最高的。 展开更多
关键词 门控注意力 双通道 情感分类 BERT BiLSTM-attention
下载PDF
门控机制的图像分类网络
5
作者 姜文涛 高原 +1 位作者 袁姮 刘万军 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2393-2406,共14页
为了提取更具表达能力和区分度的重点特征,减少网络传递时关键特征的流失,提高神经网络图像分类能力,提出一种新的门控机制图像分类网络(image classification Network of Gating Mechanism,GMNet).首先,使用门控卷积提取浅层特征,通过... 为了提取更具表达能力和区分度的重点特征,减少网络传递时关键特征的流失,提高神经网络图像分类能力,提出一种新的门控机制图像分类网络(image classification Network of Gating Mechanism,GMNet).首先,使用门控卷积提取浅层特征,通过门控机制选择性地进行卷积操作,提高网络对原始图像关键特征的提取能力;其次,设计了一种插值门控卷积(Interpolation Gated Convolution,IGC)模块,利用Lanczos插值与门控卷积相结合,强化浅层特征的同时提取更具区分度的特征,提高特征的非线性表达能力;然后,设计了大核门控注意力机制(Large kernel Gated Attention Mechanism,LGAM)模块,将大核注意力与门控卷积相融合,实现了特征的选择性增强和选择性融合,提高关键区域特征的贡献度;最后,将大核门控注意力机制模块嵌入到残差分支中,让模型更有效地学习输入数据的特征和上下文信息,减少关键特征在网络信息传递时流失,提高网络的分类能力.本文方法在图像数据集CIFAR-10、CIFAR100、SVHN、Imagenette、Imagewoof上分别达到了97.05%、83.68%、97.68%、90.60%、83.05%的分类准确率,与当前先进的方法相比分别平均提高了3.26%、7.08%、3.44%、2.65%、5.02%.与现有主流网络模型相较,本文门控机制图像分类网络能够增强特征的非线性表达能力,提取更具表达能力和区分度的重点特征,减少关键特征流失,提高关键区域特征的贡献度,有效地提高神经网络图像分类能力. 展开更多
关键词 图像分类 门控机制 门控卷积 插值门控卷积 大核门控注意力 残差网络
下载PDF
基于语义拼写理解和门控注意力机制的不良言论检测
6
作者 周险兵 樊小超 +2 位作者 杨勇 刁宇峰 任鸽 《计算机应用与软件》 北大核心 2024年第1期112-118,125,共8页
如何自动检测网络传播的不良言论信息是自然语言处理研究领域的热门研究内容之一。针对不良言论中语义表达和拼写习惯的特点,提出一种基于语义拼写理解和门控注意力机制的不良言论检测方法。该方法采用自注意力机制获取文本的语义特征,... 如何自动检测网络传播的不良言论信息是自然语言处理研究领域的热门研究内容之一。针对不良言论中语义表达和拼写习惯的特点,提出一种基于语义拼写理解和门控注意力机制的不良言论检测方法。该方法采用自注意力机制获取文本的语义特征,采用卷积神经网络提取文本的拼写特征,采用前期特征融合和门控注意力机制相结合的方式融合语义和拼写特征。在两个公共数据集上的实验结果表明,提出的模型能够有效地提取不良言论的语义特征,提高不良言论检测的性能。 展开更多
关键词 不良言论检测 语义拼写理解 自注意力机制 早期融合 门控注意力机制
下载PDF
融合主题预测和情感推理的共情回复生成方法 被引量:1
7
作者 唐宏 彭金枝 +1 位作者 郭艳霞 刘杰 《计算机工程与应用》 CSCD 北大核心 2023年第14期114-123,共10页
越来越多的研究开始聚焦于共情回复生成,然而现有的研究往往只关注于影响共情的表面情感因素,却忽略了对话中主题的变化和情感背后的原因,这将会导致生成的共情回复与主题不相关或共情性不足,从而降低用户的交互体验。因此提出一种融合... 越来越多的研究开始聚焦于共情回复生成,然而现有的研究往往只关注于影响共情的表面情感因素,却忽略了对话中主题的变化和情感背后的原因,这将会导致生成的共情回复与主题不相关或共情性不足,从而降低用户的交互体验。因此提出一种融合主题信息和深层次情感信息的共情回复生成方法。通过主题预测模块进行受上下文控制的主题预测,得到一个候选主题词序列;通过情感推理模块预测出对话上下文的情感标签和检测出对话上下文中与情感原因相关的词,得到一个情感原因词标签序列;在回复生成模块中引入主题词门控注意力机制和情感原因词标签门控注意力机制,动态地选择出用于生成共情回复的主题词和情感原因词,促使对话模型生成主题相关且情感共鸣的共情回复。在数据集EmpatheticDialogues上的实验表明,该方法生成的回复的内容更加丰富、主题更加相关、情感更加共鸣。 展开更多
关键词 共情回复生成 对话模型 主题预测模块 情感推理模块 门控注意机制
下载PDF
基于门控注意力单元的中文医学命名实体识别
8
作者 吴晓鸰 陈祥旺 +1 位作者 占文韬 凌捷 《广东工业大学学报》 CAS 2023年第6期176-184,共9页
医学命名实体识别任务是对电子病历中的医学实体进行自动识别和分类,对于下游任务例如信息检索、知识图谱等有着十分重要的作用。现有的方法忽略了实体间的依赖性,因此,本文提出了一种基于门控注意力单元的模型,首先利用预训练模型MC-B... 医学命名实体识别任务是对电子病历中的医学实体进行自动识别和分类,对于下游任务例如信息检索、知识图谱等有着十分重要的作用。现有的方法忽略了实体间的依赖性,因此,本文提出了一种基于门控注意力单元的模型,首先利用预训练模型MC-BERT捕捉上下文语境信息,再利用交叉注意力和门控注意力单元提高实体查询和上下文语义之间的交互性,并提取实体间的依赖关系和关联性,最后,利用二分图的匹配算法,计算模型训练中的损失。本文在CMeEE、CMQNN和MSRA数据集上进行了实验,实验结果表明本文模型在3个数据集上的F1值分别达到了70.74%,96.92%和95.53%,优于其他相关模型,证明了本文模型在中文医学命名实体识别任务上的有效性。 展开更多
关键词 中文命名实体识别 门控注意力单元 交叉注意力 MC-BERT
下载PDF
跨级可变形Transformer编解码视网膜图像分割算法 被引量:1
9
作者 梁礼明 阳渊 +1 位作者 何安军 李仁杰 《无线电工程》 北大核心 2023年第9期1990-2001,共12页
眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encodin... 眼底视网膜血管图像分割对青光眼、糖尿病等疾病的预防和诊断具有重要意义。针对视网膜血管图像边缘分割模糊、微细血管漏缺和模型感受野不足等问题,提出了一种跨级可变形Transformer编解码(Cross-stage Deformable Transformer Encoding and Decoding Net,CTED-Net)视网膜图像分割算法。在特征提取网络中融入通道像素增强模块和跨级融合骨干,实现对视网膜血管全局特征的粗提取;在网络编码部分加入可变形自适应编码Transformer模块(Deformable Adaptive Coding Transformer Module,DACT),通过可变形编码的方式增大模型感受野;在编解码结构底层加入深层语义门控注意模块,实现对视网膜血管深层特征的充分学习,以改善血管图像边缘分割模糊的问题。在模型训练阶段采用加权交叉焦点损失函数,克服视网膜血管图像样本不平衡的问题。在公共数据集DRIVE和STARE上进行仿真实验,所提算法灵敏度、特异性、准确率和AUC指标在DRIVE上达到84.25%、98.17%、96.46%和98.70%,在STARE上达到80.22%、98.64%、96.71%和98.78%。通过与其他先进算法对比分析可以看出,所提算法分割效果可靠且整体性能先进。 展开更多
关键词 可变形Transformer 跨级融合骨干 加权交叉焦点损失函数 视网膜血管图像分割 深层语义门控注意模块
下载PDF
图神经网络在冷启动推荐中的实现 被引量:3
10
作者 高巍 朱风兰 +2 位作者 李大舟 周河晓 陈思思 《计算机工程与设计》 北大核心 2022年第9期2557-2566,共10页
针对在互联网金融产业发展过程中,推荐系统因数据稀疏性带来的用户冷启动和项目冷启动问题,提出一种同构属性特点的图神经网络的冷启动推荐模型。提出一种构造用户属性和项目属性的信息图方法;提出一种改进的变分图自编码器,解决偏好重... 针对在互联网金融产业发展过程中,推荐系统因数据稀疏性带来的用户冷启动和项目冷启动问题,提出一种同构属性特点的图神经网络的冷启动推荐模型。提出一种构造用户属性和项目属性的信息图方法;提出一种改进的变分图自编码器,解决偏好重构嵌入问题;使用门控注意力聚合器,解决聚合邻域中不同模态的多属性问题。通过真实的京东数据集,与经典模型相比较,该模型在MSE值、RMSE值和MAE值至少降低了4.05%、2.02%和2.53%,验证了模型在解决推荐系统冷启动问题方面的有效性。 展开更多
关键词 推荐系统 图神经网络 冷启动推荐 信息图 门控注意力聚合器
下载PDF
基于分解门控注意力单元的高效Conformer模型
11
作者 李宜亭 屈丹 +2 位作者 杨绪魁 张昊 沈小龙 《计算机工程》 CAS CSCD 北大核心 2023年第5期73-80,共8页
为利用有限的存储和计算资源,在保证Conformer端到端语音识别模型精度的前提下,减少模型参数量并加快训练和识别速度,构建一个基于分解门控注意力单元与低秩分解的高效Conformer模型。在前馈和卷积模块中,通过低秩分解进行计算加速,提高... 为利用有限的存储和计算资源,在保证Conformer端到端语音识别模型精度的前提下,减少模型参数量并加快训练和识别速度,构建一个基于分解门控注意力单元与低秩分解的高效Conformer模型。在前馈和卷积模块中,通过低秩分解进行计算加速,提高Conformer模型的泛化能力。在自注意力模块中,使用分解门控注意力单元降低注意力计算复杂度,同时引入余弦加权机制对门控注意力进行加权保证其向邻近位置集中,提高模型识别精度。在AISHELL-1数据集上的实验结果表明,在引入分解门控注意力单元和余弦编码后,该模型的参数量和语音识别字符错误率(CER)明显降低,尤其当参数量被压缩为Conformer端到端语音识别模型的50%后语音识别CER仅增加了0.34个百分点,并且具有较低的计算复杂度和较高的语音识别精度。 展开更多
关键词 端到端语音识别 Conformer模型 分解门控注意力单元 模型压缩 低秩分解
下载PDF
门控多层融合的实时语义分割 被引量:3
12
作者 张灿龙 程庆贺 +1 位作者 李志欣 王智文 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第9期1442-1449,共8页
针对语义分割任务中因模型下采样过程中的像素损失而导致的上采样像素难以精确还原的问题,提出一种基于门控多层融合的实时语义分割方法.考虑分割的实时性,采用轻量级模型作为基础网络进行特征信息的提取.为解决像素难以精确还原问题,... 针对语义分割任务中因模型下采样过程中的像素损失而导致的上采样像素难以精确还原的问题,提出一种基于门控多层融合的实时语义分割方法.考虑分割的实时性,采用轻量级模型作为基础网络进行特征信息的提取.为解决像素难以精确还原问题,设计了一种横向连接的门控注意力结构,此结构可以对目标特征进行筛选,并通过横向传递增强上采样特征图信息的多样性,从而提高特征图的还原精度.此外,还提出采用多层融合结构来整合不同网络层的语义信息,利用不同网络层间的语义表达差异对缺失像素进行补充.实验以CamVid和VOC为数据集,以512×512大小的图像为输入,测试结果表明,方法的图像语义分割精度达到72.9%,平均分割速度为43.1帧/s. 展开更多
关键词 图像语义分割 多层融合 门控注意力机制
下载PDF
融合多级语义特征的双通道GAN事件检测方法 被引量:3
13
作者 潘丽敏 李筱雅 +1 位作者 罗森林 吴舟婷 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第3期295-302,共8页
目前事件检测方法往往将句中事件视为独立个体,忽视了句子或文档内事件间的相关关系,且某些触发词在不同语境下可能触发不同事件,而多种语境下训练的词向量会引入与当前语境无语义关联的噪声.针对此问题,本文提出一种融合多级语义特征... 目前事件检测方法往往将句中事件视为独立个体,忽视了句子或文档内事件间的相关关系,且某些触发词在不同语境下可能触发不同事件,而多种语境下训练的词向量会引入与当前语境无语义关联的噪声.针对此问题,本文提出一种融合多级语义特征的双通道GAN事件检测方法,使用多级门限注意力机制获取句子级和文档级事件间的语义相关性,并利用双通道GAN及其自调节学习能力减轻噪声信息的影响,进而提高事件特征表示的准确性.在公开数据ACE2005英文语料上进行实验,F1值达到了77%,结果表明该方法能够有效获取事件间的语义相关性,并提高语境判定的准确性. 展开更多
关键词 语义相关性 噪声 多级门限注意力 双通道GAN
下载PDF
改进SegFormer网络的遥感图像语义分割方法 被引量:3
14
作者 田雪伟 汪佳丽 +1 位作者 陈明 杜守庆 《计算机工程与应用》 CSCD 北大核心 2023年第8期217-226,共10页
由于遥感图像存在目标尺度多、小目标的语义信息不足等问题,现有算法对遥感图像中小目标和目标边界难以精准分割。为此提出了一种改进SegFormer网络的遥感图像语义分割方法,以级联的方式合并SegFormer编码器输出的多个尺度的特征。在合... 由于遥感图像存在目标尺度多、小目标的语义信息不足等问题,现有算法对遥感图像中小目标和目标边界难以精准分割。为此提出了一种改进SegFormer网络的遥感图像语义分割方法,以级联的方式合并SegFormer编码器输出的多个尺度的特征。在合并高层语义信息特征时使用语义特征融合模块保留模糊边界;在合并细节信息特征时使用门控注意力机制模块过滤部分高层语义信息特征,减少其对细节信息特征的干扰。之后将多个尺度的特征上采样后连接,使用多局部通道注意力模块根据通道上下文关系重新校准连接特征的映射关系,增强最终的分割效果。在UAVid和ISPRS Potsdam数据集上的实验结果表明,改进SegFormer的分割方法优于比较的当前主流分割方法,对遥感图像中的小目标和边界有更好的语义分割效果。 展开更多
关键词 遥感图像 语义分割 特征融合 门控注意力 多局部通道注意力
下载PDF
双元双模态下二次门控融合的多模态情感分析
15
作者 刘青文 买日旦·吾守尔 古兰拜尔·吐尔洪 《计算机工程与应用》 CSCD 北大核心 2024年第8期165-172,共8页
为了平衡情感信息在不同模态中分布的不均匀性,获得更深层次的多模态情感表征,提出了一种基于双元双模态二次门控融合的多模态情感分析方法。对文本、视觉模态,文本、语音模态分别融合,充分考虑文本模态在三个模态中的优势地位。同时为... 为了平衡情感信息在不同模态中分布的不均匀性,获得更深层次的多模态情感表征,提出了一种基于双元双模态二次门控融合的多模态情感分析方法。对文本、视觉模态,文本、语音模态分别融合,充分考虑文本模态在三个模态中的优势地位。同时为了获得更深层次的多模态交互信息,使用二次融合。在第一次融合中,使用融合门决定向主模态添加多少补充模态的知识,得到两个双模态混合知识矩阵。在第二次融合中,考虑到两个双模态混合知识矩阵中存在冗余、重复的信息,使用选择门从中选择有效、精简的情感信息作为双模态融合后的知识。在公开数据集CMU-MOSEI上,情感二分类的准确率和F1值分别达到了86.2%、86.1%,表现出良好的健壮性和先进性。 展开更多
关键词 多模态情感分析 双元双模态 二次融合 门控注意力机制
下载PDF
基于非局部和门控轴向注意力的行人重识别
16
作者 陈禹 刘慧 +1 位作者 梁东升 张雷 《微处理机》 2024年第2期41-46,共6页
为进一步改善行人重识别技术在实际应用中的表现,通过引入自注意力机制,提出一种结合非局部模块和门控轴向注意力模块的行人重识别方法。该方法将自注意力模块插入到重识别网络卷积层中,通过非局部模块同时捕捉全局和局部上下文信息,并... 为进一步改善行人重识别技术在实际应用中的表现,通过引入自注意力机制,提出一种结合非局部模块和门控轴向注意力模块的行人重识别方法。该方法将自注意力模块插入到重识别网络卷积层中,通过非局部模块同时捕捉全局和局部上下文信息,并引入门控机制的轴向注意力模块提高行人重识别的准确性。在Market1501数据集上进行消融实验,验证同时使用非局部模块和门控轴向注意力模块对模型性能的显著提升效果。实验结果验证了设计的可行性与先进性,对相关领域研究具有一定的参考意义。 展开更多
关键词 行人重识别 自注意力 非局部注意力 门控轴向注意力 BOT模型
下载PDF
基于时空图注意力的短期电力负荷预测方法
17
作者 李文英 杨高才 +4 位作者 文明 罗姝晨 于宗超 姜羽 王鼎湘 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期57-67,共11页
准确的电力负荷预测对现代电力系统的安全经济运行至关重要.电力负荷预测可以表述为一个具有一定潜在空间依赖性的多变量时序预测问题.然而,大多数现有的电力负荷预测工作未能探索这种空间依赖关系.基于此,本文提出了一种基于时空图注... 准确的电力负荷预测对现代电力系统的安全经济运行至关重要.电力负荷预测可以表述为一个具有一定潜在空间依赖性的多变量时序预测问题.然而,大多数现有的电力负荷预测工作未能探索这种空间依赖关系.基于此,本文提出了一种基于时空图注意网络的短期电力负荷预测方法.提出一种基于时空图注意网络模块,该模块使用图注意层实现自适应的捕捉各用户间的潜在空间依赖性,同时使用门控卷积注意力层对各用户用电量在时间维度上进行自适应拟合,以提高网络的预测精度.实际数据实验表明,本文提出的模型整体预测精度提高明显,特别是在一定程度上缓解了长程预测精度恶化的问题,验证了所提方法的有效性与可行性. 展开更多
关键词 电力负荷预测 小世界网络 时空图注意力 门控扩张因果卷积
下载PDF
HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning
18
作者 Zhihui Song Jinchen Xu +1 位作者 Kewei Li Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第6期4573-4601,共29页
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation... Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality. 展开更多
关键词 Vulnerability detection deep learning CST-PDG code representation tree-graph-gated-attention network CROSS-LANGUAGE
下载PDF
基于门控双层异构图注意力网络的半监督短文本分类 被引量:2
19
作者 蒋云良 王青朋 +3 位作者 张雄涛 黄旭 申情 饶佳峰 《模式识别与人工智能》 EI CSCD 北大核心 2023年第7期602-612,共11页
针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Laye... 针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Layer Heterogeneous Graph Attention Network,GDHG).GDHG包含节点注意力机制和门控异构图注意力网络两层.首先,使用节点注意力机制,训练不同类型的节点注意力系数,再将系数输入门控异构图注意力网络,训练得到门控双层注意力.然后,将门控双层注意力与节点的不同状态相乘,得到聚合的节点特征.最后,使用softmax函数对文本进行分类.GDHG利用节点注意力机制和门控异构图注意力网络的信息遗忘机制对节点信息进行聚集,得到有效的相邻节点信息,进而挖掘不同邻居节点的隐藏信息,提高聚合远程节点信息的能力.在Twitter、MR、Snippets、AGNews四个短文本数据集上的实验验证GDHG性能较优. 展开更多
关键词 门控异构图注意力 半监督学习 异构图神经网络 短文本分类
下载PDF
基于语义先验知识与类型嵌入的复杂实体识别 被引量:1
20
作者 姜小波 何昆 阎广瑜 《软件学报》 EI CSCD 北大核心 2023年第12期5649-5669,共21页
实体识别是信息抽取的关键任务.随着信息抽取技术的发展,研究人员从简单实体的识别转向复杂实体的识别.然而,复杂实体缺乏明显的特征且在句法结构与词性组成上更加复杂多样,给实体识别带来了巨大挑战.此外,现有模型广泛采用基于跨度的... 实体识别是信息抽取的关键任务.随着信息抽取技术的发展,研究人员从简单实体的识别转向复杂实体的识别.然而,复杂实体缺乏明显的特征且在句法结构与词性组成上更加复杂多样,给实体识别带来了巨大挑战.此外,现有模型广泛采用基于跨度的方法来识别嵌套实体,在实体边界检测方面呈现出模糊化,影响识别的性能.针对这些问题和挑战,提出了一种基于语义先验知识与类型嵌入的实体识别模型GIA-2DPE.该模型使用实体类别的关键词序列作为语义先验知识来提升对实体的认知,并通过类型嵌入捕获不同实体类型的潜在特征,然后通过门控交互注意力机制将先验知识与类型特征相融合以辅助复杂实体识别.另外,模型通过2D概率编码来预测实体边界,并利用边界特征和上下文特征来增强对边界的精准检测,从而提升嵌套实体的识别效果.在7个英文数据集和2个中文数据集上进行了广泛实验.结果表明,GIA-2DPE超越了目前最先进的模型;并且在ScienceIE数据集的实体识别任务中,相对基线F1分数取得了最高10.4%的提升. 展开更多
关键词 信息抽取 复杂实体识别 门控交互注意力机制 2D概率编码
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部