为分析寄生参数对开关过程中碳化硅(Si C)MOSFET栅源极电压的影响,首先建立了基于同步Buck变换器的Si C MOSFET开通和关断过程的数学模型;然后通过仿真和实验结果对比,验证了寄生参数带来的影响;最后分析了开关过程中各寄生参数对Si C M...为分析寄生参数对开关过程中碳化硅(Si C)MOSFET栅源极电压的影响,首先建立了基于同步Buck变换器的Si C MOSFET开通和关断过程的数学模型;然后通过仿真和实验结果对比,验证了寄生参数带来的影响;最后分析了开关过程中各寄生参数对Si C MOSFET栅源极电压的影响。展开更多
为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子...为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子积累层,使器件保持了较短的电流传导路径,同时扩展了电流在纵向的传导面积,显著降低了器件的比导通电阻.槽栅调制了漂移区电场,同时,纵向栅氧层承担了部分漏极电压,使器件击穿电压得到提高.借助2维数值仿真软件MEDICI详细分析了器件的击穿特性和导通电阻特性.仿真结果表明:在保证最高优值的条件下,该结构的击穿电压和比导通电阻与传统SOI LDMOS相比,分别提高和降低了8%和45%.展开更多
文摘为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子积累层,使器件保持了较短的电流传导路径,同时扩展了电流在纵向的传导面积,显著降低了器件的比导通电阻.槽栅调制了漂移区电场,同时,纵向栅氧层承担了部分漏极电压,使器件击穿电压得到提高.借助2维数值仿真软件MEDICI详细分析了器件的击穿特性和导通电阻特性.仿真结果表明:在保证最高优值的条件下,该结构的击穿电压和比导通电阻与传统SOI LDMOS相比,分别提高和降低了8%和45%.