Previous studies have shown that somatic sensation by acupuncture and visceral nociceptive stimulation can converge in the nucleus tractus solitarii where neurons integrate signals impact- ing on the function of organ...Previous studies have shown that somatic sensation by acupuncture and visceral nociceptive stimulation can converge in the nucleus tractus solitarii where neurons integrate signals impact- ing on the function of organs. To explore the role of the nucleus tractus solitarii in the protective mechanism of pre-moxibustion on gastric mucosa, nucleus tractus solitarii were damaged in rats and pre-moxibustion treatment at the Zusanli (ST36) point followed. The gastric mucosa was then damaged by the anhydrous ethanol lavage method. Morphological observations, enzyme linked immunosorbent assays, and western immunoblot analyses showed that gastric mucosa surface lesion and the infiltration of inflammatory cells were significantly ameliorated after pre-moxibustion treatment. Furthermore, the gastric mucosal damage index and somatostatin level were reduced, and epidermal growth factor content in the gastric mucosa and heat-shock protein-70 expression were increased. These results were reversed by damage to the nucleus tractus solitarii. These findings suggest that moxibustion pretreatment at the Zusanli point is protective against acute gastric mucosa injury, and nucleus tractus solitarii damage inhibits these responses. Therefore, the nucleus tractus solitarii may be an important area for regulating the signal transduction of the protective effect of pre-moxibustion on gastric mucosa.展开更多
基金funded by the National Basic Research Program of China(973 Pro-gram),No.2009CB522904the National Natural Science Foundation of China,No.81303050,81173326 and 81202770the Ph.D.Programs Foundation of Ministry of Education of China,No.20124323110001 and 20124323120002
文摘Previous studies have shown that somatic sensation by acupuncture and visceral nociceptive stimulation can converge in the nucleus tractus solitarii where neurons integrate signals impact- ing on the function of organs. To explore the role of the nucleus tractus solitarii in the protective mechanism of pre-moxibustion on gastric mucosa, nucleus tractus solitarii were damaged in rats and pre-moxibustion treatment at the Zusanli (ST36) point followed. The gastric mucosa was then damaged by the anhydrous ethanol lavage method. Morphological observations, enzyme linked immunosorbent assays, and western immunoblot analyses showed that gastric mucosa surface lesion and the infiltration of inflammatory cells were significantly ameliorated after pre-moxibustion treatment. Furthermore, the gastric mucosal damage index and somatostatin level were reduced, and epidermal growth factor content in the gastric mucosa and heat-shock protein-70 expression were increased. These results were reversed by damage to the nucleus tractus solitarii. These findings suggest that moxibustion pretreatment at the Zusanli point is protective against acute gastric mucosa injury, and nucleus tractus solitarii damage inhibits these responses. Therefore, the nucleus tractus solitarii may be an important area for regulating the signal transduction of the protective effect of pre-moxibustion on gastric mucosa.