The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environment...The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environmental guidelines to address various emission requirements.This paper presents a methodology to investigate the feasibility of both GHG and NGHG emission reduction in a deregulated electricity market.The proposed model takes into consideration the effect of NGHG emission cost constraints in conjunction with classical GHG emission constraints for the scheduling aspects of GENCO.A profit based self-scheduling problem with conventional fossil fueled generators and renewable energy technologies(RETs)is formulated including emission penalties and avoidance costs of GHG and NGHG emissions,respectively.Thereafter,a set of pareto solutions is evaluated for different possible scheduling scenarios.A simple,effective optimality criteria is also postulated to identify the tradeoff solution.Finally,a sensitivity analysis of various technical,environmental,as well as economic aspects is presented to examine the effect of NGHG consideration and RET inclusion in scheduling.The simulation results are presented and discussed in detail to examine the effect of NGHG consideration in self-scheduling practices of GENCO in the electricity market,thus reflecting the benefits of the proposed approach over classical emission handling approaches.展开更多
Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthro...Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthropogenic GHG emissions and restrain global warming. The quantitative assessment of anthropogenic GHG emissions is the scientific basis to find out the status of global GHG emission, identify the commitments of each country, and arrange the international efforts of GHG emission reduction. Currently the main assessment indicators for GHG emission include national indicator, per capita indicator, per GDP indicator, and international trade indicator etc. The introduction to the above indi- cators is put forward and their merits and demerits are analyzed. Based on the GHG emission data from the World Resource Institute (WRI), the US Energy Information Administration (EIA), and the Carbon Dioxide Information Analysis Center (CDIAC), the results of each indictor are calculated for the world, for the eight G8 industrialized countries (USA, UK, Canada, Japan, Germany, France, Italy and Russia), and the five major developing countries including China, Brazil, India, South Africa and Mexico. The paper points out that all these indicators have some limitations. The Indicator of Industrialized Accumulative Emission per Capita (IAEC) is put forward as the equitable indicator to evaluate the industrialized historical accumulative emission per capita of every country. IAEC indicator can reflect the economic achievement of GHG emission enjoyed by the current generations in every country and their commitments. The analysis of IAEC indicates that the historical accumulative emission per capita in indus- trialized countries such as UK and USA were typically higher than those of the world average and the developing countries. Emission indicator per capita per GDP, consumptive emission indicator and survival emission indicator are also put forward and discussed in the paper.展开更多
This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of...This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is展开更多
Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c...Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.展开更多
Climate change impacts on Earth’s atmosphere have caused drastic changes in the environment of most regions of the world. The Middle East region ranks among the worst affected of these regions. This has taken forms o...Climate change impacts on Earth’s atmosphere have caused drastic changes in the environment of most regions of the world. The Middle East region ranks among the worst affected of these regions. This has taken forms of increasing atmospheric temperatures, intensive heat waves, decreased and erratic precipitation and general decline in water resources;all leading to frequent and longer droughts, desertification and giving rise to intensive and recurrent (SDS). The present conditions have led to increasing emissions of (GHG) in the earth atmosphere. All future projections especially those using (IPCC) models and emission scenarios indicate that the Middle East will undergo appreciable decrease in winter precipitation with increasing temperature until the end of this century both of which are inductive to increased dryness and desertification. Iraq as one of the countries of this region and due to its geographical location, its dependence mostly on surface water resources originating from neighboring countries, long years of neglect and bad land management put it in the most precarious and unstable position among the other countries of the region. Modelling studies have shown that Iraq is suffering now from excessive dryness and droughts, increasing loss of vegetation cover areas, increasing encroachment of sand dunes on agricultural lands, in addition to severe and frequent (SDS). These negative repercussions and their mitigations require solutions not on the local level alone but collective cooperation and work from all the countries of the region.展开更多
The ozone layer depletion and its harmful impact on living beings have been a greater concern of all the scientists all over the world. The aim of this paper is to reveal the current status of stratospheric ozone over...The ozone layer depletion and its harmful impact on living beings have been a greater concern of all the scientists all over the world. The aim of this paper is to reveal the current status of stratospheric ozone over Pakistan. The annual, monthly and seasonal analyses have been performed in order to check the status. The variation in total column of ozone has been observed during these analyses and decrease in total column of ozone has been seen in all the investigations from 1987-2008. The correlation coefficient for JRA forecasted data and observed ozone data is 0.6. Both the data sets show decline in ozone concentration. The total change calculated in annual depth of ozone is ?5.67 D.U and ?4.2 D.U in monthly depth of ozone. The seasonal analysis shows that the total change in ozone in summer is ?6.3 D.U, in spring ?10.5 D.U, in winter ?3.15 D.U and in autumn ?2.0 D.U. Maximum change in ozone thickness has been found in spring and minimum in autumn. The solar radiations, decrease in temperatures of stratosphere and carbon dioxide (CO2) play significant role in ozone layer depletion. According to the findings of this study solar radiations and carbon dioxide (CO2) are inversely proportional to the total column of ozone. The correlation coefficient for solar radiations and ozone on annual basis is 0.44 (R2 = 0.44) and on monthly basis is around 0.35 (R2 = 0.35). Therefore the more intense the solar radiations the more ozone layer thinning will occur. The correlation coefficient for ozone and carbon dioxide is around 0.3 (R2 = 0.3) during the study period. The decrease in stratospheric temperatures will cause the cooling of stratosphere which is ultimately responsible for ozone layer depletion. The total decrease analyzed in stratospheric temperatures during the study period is about ?1.3℃. It is observed that alarming rise in carbon dioxide (CO2) concentration is not only contributing to global warming in troposphere but cooling in the stratosphere.展开更多
文摘The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environmental guidelines to address various emission requirements.This paper presents a methodology to investigate the feasibility of both GHG and NGHG emission reduction in a deregulated electricity market.The proposed model takes into consideration the effect of NGHG emission cost constraints in conjunction with classical GHG emission constraints for the scheduling aspects of GENCO.A profit based self-scheduling problem with conventional fossil fueled generators and renewable energy technologies(RETs)is formulated including emission penalties and avoidance costs of GHG and NGHG emissions,respectively.Thereafter,a set of pareto solutions is evaluated for different possible scheduling scenarios.A simple,effective optimality criteria is also postulated to identify the tradeoff solution.Finally,a sensitivity analysis of various technical,environmental,as well as economic aspects is presented to examine the effect of NGHG consideration and RET inclusion in scheduling.The simulation results are presented and discussed in detail to examine the effect of NGHG consideration in self-scheduling practices of GENCO in the electricity market,thus reflecting the benefits of the proposed approach over classical emission handling approaches.
基金The Key Project for Knowledge Innovation Program of CAS,No.KZCX2-YW-501The Western Talent Project of CAS in2005The National S&T Pillar Program,No.007BAC03A11-05
文摘Anthropogenic greenhouse gases (GHG) emission and related global warming issues have been the focus of international communities for some time. The international communities have reached a consensus to reduce anthropogenic GHG emissions and restrain global warming. The quantitative assessment of anthropogenic GHG emissions is the scientific basis to find out the status of global GHG emission, identify the commitments of each country, and arrange the international efforts of GHG emission reduction. Currently the main assessment indicators for GHG emission include national indicator, per capita indicator, per GDP indicator, and international trade indicator etc. The introduction to the above indi- cators is put forward and their merits and demerits are analyzed. Based on the GHG emission data from the World Resource Institute (WRI), the US Energy Information Administration (EIA), and the Carbon Dioxide Information Analysis Center (CDIAC), the results of each indictor are calculated for the world, for the eight G8 industrialized countries (USA, UK, Canada, Japan, Germany, France, Italy and Russia), and the five major developing countries including China, Brazil, India, South Africa and Mexico. The paper points out that all these indicators have some limitations. The Indicator of Industrialized Accumulative Emission per Capita (IAEC) is put forward as the equitable indicator to evaluate the industrialized historical accumulative emission per capita of every country. IAEC indicator can reflect the economic achievement of GHG emission enjoyed by the current generations in every country and their commitments. The analysis of IAEC indicates that the historical accumulative emission per capita in indus- trialized countries such as UK and USA were typically higher than those of the world average and the developing countries. Emission indicator per capita per GDP, consumptive emission indicator and survival emission indicator are also put forward and discussed in the paper.
文摘This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is
基金the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)the National Natural Science Foundation of China(20776089)
文摘Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.
文摘Climate change impacts on Earth’s atmosphere have caused drastic changes in the environment of most regions of the world. The Middle East region ranks among the worst affected of these regions. This has taken forms of increasing atmospheric temperatures, intensive heat waves, decreased and erratic precipitation and general decline in water resources;all leading to frequent and longer droughts, desertification and giving rise to intensive and recurrent (SDS). The present conditions have led to increasing emissions of (GHG) in the earth atmosphere. All future projections especially those using (IPCC) models and emission scenarios indicate that the Middle East will undergo appreciable decrease in winter precipitation with increasing temperature until the end of this century both of which are inductive to increased dryness and desertification. Iraq as one of the countries of this region and due to its geographical location, its dependence mostly on surface water resources originating from neighboring countries, long years of neglect and bad land management put it in the most precarious and unstable position among the other countries of the region. Modelling studies have shown that Iraq is suffering now from excessive dryness and droughts, increasing loss of vegetation cover areas, increasing encroachment of sand dunes on agricultural lands, in addition to severe and frequent (SDS). These negative repercussions and their mitigations require solutions not on the local level alone but collective cooperation and work from all the countries of the region.
文摘The ozone layer depletion and its harmful impact on living beings have been a greater concern of all the scientists all over the world. The aim of this paper is to reveal the current status of stratospheric ozone over Pakistan. The annual, monthly and seasonal analyses have been performed in order to check the status. The variation in total column of ozone has been observed during these analyses and decrease in total column of ozone has been seen in all the investigations from 1987-2008. The correlation coefficient for JRA forecasted data and observed ozone data is 0.6. Both the data sets show decline in ozone concentration. The total change calculated in annual depth of ozone is ?5.67 D.U and ?4.2 D.U in monthly depth of ozone. The seasonal analysis shows that the total change in ozone in summer is ?6.3 D.U, in spring ?10.5 D.U, in winter ?3.15 D.U and in autumn ?2.0 D.U. Maximum change in ozone thickness has been found in spring and minimum in autumn. The solar radiations, decrease in temperatures of stratosphere and carbon dioxide (CO2) play significant role in ozone layer depletion. According to the findings of this study solar radiations and carbon dioxide (CO2) are inversely proportional to the total column of ozone. The correlation coefficient for solar radiations and ozone on annual basis is 0.44 (R2 = 0.44) and on monthly basis is around 0.35 (R2 = 0.35). Therefore the more intense the solar radiations the more ozone layer thinning will occur. The correlation coefficient for ozone and carbon dioxide is around 0.3 (R2 = 0.3) during the study period. The decrease in stratospheric temperatures will cause the cooling of stratosphere which is ultimately responsible for ozone layer depletion. The total decrease analyzed in stratospheric temperatures during the study period is about ?1.3℃. It is observed that alarming rise in carbon dioxide (CO2) concentration is not only contributing to global warming in troposphere but cooling in the stratosphere.