The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single ...The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.展开更多
Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laborator...Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laboratory experiment,pilot-scale test,and on-site demonstration were carried out in Shenzhen,China.In the laboratory experiment,A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents.The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min,respectively,under which the product generation rate was 4.5 m^(3)/h and the methane concentration was above 90%.The process and optimization of the pilot-scale test were also reported in the paper.The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel(GB18047-2000),when the air concentration in feed gas was under 10.96%.The demonstration project was composed of a collection system,production system,and utilization system.The drive performance,environmental protection performance,and economic feasibility of the product gas—as alternative fuel in passenger car,truck,and bulldozer—were tested,showing the feasibility technology for LFG utilization.展开更多
This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)...This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages.In this study,the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate.Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model.The model calibration was then calculated by using the experimental data.The results suggested that the new model was in line with the experimental data.The main parameters of the modified FKTSR model,including the LFG production potential(L0),the reaction rate constant in the first stage(K1),and the reaction rate constant in the second stage(K2)of 64.746 L,0.202 d^(–1),and 0.338 d^(–1),respectively,were comparable to the old ones of 42.069 L,0.231 d^(–1),and 0.231 d^(–1).The new model is better able to explain the mechanisms involved in LFG generation.展开更多
文摘The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.
文摘Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laboratory experiment,pilot-scale test,and on-site demonstration were carried out in Shenzhen,China.In the laboratory experiment,A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents.The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min,respectively,under which the product generation rate was 4.5 m^(3)/h and the methane concentration was above 90%.The process and optimization of the pilot-scale test were also reported in the paper.The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel(GB18047-2000),when the air concentration in feed gas was under 10.96%.The demonstration project was composed of a collection system,production system,and utilization system.The drive performance,environmental protection performance,and economic feasibility of the product gas—as alternative fuel in passenger car,truck,and bulldozer—were tested,showing the feasibility technology for LFG utilization.
基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050027002)。
文摘This investigation was carried out to establish a new domestic landfill gas(LFG)generation rate model that takes into account the impact of leachate recirculation.The first-order kinetics and two-stage reaction(FKTSR)model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages.In this study,the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate.Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model.The model calibration was then calculated by using the experimental data.The results suggested that the new model was in line with the experimental data.The main parameters of the modified FKTSR model,including the LFG production potential(L0),the reaction rate constant in the first stage(K1),and the reaction rate constant in the second stage(K2)of 64.746 L,0.202 d^(–1),and 0.338 d^(–1),respectively,were comparable to the old ones of 42.069 L,0.231 d^(–1),and 0.231 d^(–1).The new model is better able to explain the mechanisms involved in LFG generation.