In this work we apply the differential transformation method or DTM for solving some classes of Lane-Emden type equations as a model for the dimensionless density distribution in an isothermal gas sphere and as a stud...In this work we apply the differential transformation method or DTM for solving some classes of Lane-Emden type equations as a model for the dimensionless density distribution in an isothermal gas sphere and as a study of the gravitational potential of (white-dwarf) stars , which are nonlinear ordinary differential equations on the semi-infinite domain [1] [2]. The efficiency of the DTM is illustrated by investigating the convergence results for this type of the Lane-Emden equations. The numerical results show the reliability and accuracy of this method.展开更多
In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are suppo...In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are supported by ideal gas and radiation pressure. In each case, the gas is a polytrope which satisfies the Lane-Emden equation. Solutions are found that yield the physical properties of black holes, for the range 1000 to 100 billion solar masses.展开更多
文摘In this work we apply the differential transformation method or DTM for solving some classes of Lane-Emden type equations as a model for the dimensionless density distribution in an isothermal gas sphere and as a study of the gravitational potential of (white-dwarf) stars , which are nonlinear ordinary differential equations on the semi-infinite domain [1] [2]. The efficiency of the DTM is illustrated by investigating the convergence results for this type of the Lane-Emden equations. The numerical results show the reliability and accuracy of this method.
文摘In the following black hole model, electrons and positrons form a neutral gas which is confined by gravitation. The smaller masses are supported against gravity by electron degeneracy pressure. Larger masses are supported by ideal gas and radiation pressure. In each case, the gas is a polytrope which satisfies the Lane-Emden equation. Solutions are found that yield the physical properties of black holes, for the range 1000 to 100 billion solar masses.