This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from...This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.展开更多
The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow ana...The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.展开更多
It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but ...It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but also consciousness for environmental problem of individual trip maker is important for eco-commuting promotion.On the other hand,consciousness for environment would be changed by influence of other person.Accordingly,it is aimed in the study that the structure of decision-making process for modal shift to the eco-commuting mode in the local city is described considering environmental consciousness and social interaction.For the purpose,the consciousness for the environment problem and the travel behavior of the commuter at the suburban area in the local city are investigated by the questionnaire survey.The covariance structure about the eco-consciousness is analyzed with the database of the questionnaire survey by structural equation modeling.As the result,it can be confirmed with the structural equation model that the individual environmental consciousness is strongly related with the intention of self-sacrifice and is influenced with the local interaction of the individual connections.On the other hand,the intention of modal shift for the commuting mode is analyzed with the database of the questionnaire survey.It can be found out that the environmental consciousness is not statistically significant for commuting mode choice with the present poor level of service of public transport.However,the intention of self-sacrifice for the prevention of the global warming is statistically confirmed as the factor of modal shift with the operation of eco-commuting bus service with the RP/SP integrated estimation method.As the result,the multi-agent simulation system with social interaction model for eco consciousness is developed to measure the effect of the eco-commuting promotion.For the purpose,the carbon dioxide emission is estimated based on traffic demand and road network condition in the traffic environm展开更多
As university campuses look to decrease their greenhouse gas emissions, plug-in electric buses may provide a low carbon alternative to conventionally fossil-powered buses. This study investigates the viability for Uni...As university campuses look to decrease their greenhouse gas emissions, plug-in electric buses may provide a low carbon alternative to conventionally fossil-powered buses. This study investigates the viability for Unitrans, the bus service for the greater Davis area and the university campus, to replace current compressed natural gas buses with plug-in electric versions. This study presents an inventory of market available electric buses, their associated costs, incentives, and infrastructure concerns, and compares projected energy use, net present cost, and greenhouse gas emissions with their CNG counterparts. ADVISOR vehicle simulation software is used to estimate the energy use of a typical electric bus (New Flyer Xcelsior XE40 300 kW) and compare to the current CNG model (Orion V) along an actual Unitrans route. The model estimates that the selected bus can travel 146 miles on a single charge, with a fuel economy of 1.75 kWh per mile, which meets the service requirements. Results for bus replacement schedules between 5 and 49 in the 12-year analysis period indicate that between 1600 and 22,000 MT of carbon can be avoided. The net present cost analysis indicates that the potential savings from the replacement of a single CNG bus with an electric bus (with available incentives) ranges from $146,000 - $211,000 per bus over its lifetime, depending on infrastructure costs.展开更多
针对煤矿监控系统采用有线通信方式无法实现信息灵活采集的问题,构建了基于VB6.0的无线瓦斯监测系统,主要介绍了基于VB6.0的无线瓦斯监测系统软件的设计。该软件通过CAN总线网络接收数据采集终端发送的瓦斯数据信息,根据数据帧内容确定...针对煤矿监控系统采用有线通信方式无法实现信息灵活采集的问题,构建了基于VB6.0的无线瓦斯监测系统,主要介绍了基于VB6.0的无线瓦斯监测系统软件的设计。该软件通过CAN总线网络接收数据采集终端发送的瓦斯数据信息,根据数据帧内容确定作业地点、作业人员、瓦斯浓度,并将数据存储在SQL Server 2000数据库中,从而实现了瓦斯浓度超限报警、实时数据显示、人员定位信息查询等功能。展开更多
文摘This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.
文摘The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.
基金The research is granted by Japanese Ministry of Education as a part of Grants-in-Aid for Scientific Research,No.(C)22560533.The author records here warmest appreciation to the Resident Conference for Environment of Tokushima Prefecture for collecting the data in the field of actual travel behavior on the social experiment.
文摘It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but also consciousness for environmental problem of individual trip maker is important for eco-commuting promotion.On the other hand,consciousness for environment would be changed by influence of other person.Accordingly,it is aimed in the study that the structure of decision-making process for modal shift to the eco-commuting mode in the local city is described considering environmental consciousness and social interaction.For the purpose,the consciousness for the environment problem and the travel behavior of the commuter at the suburban area in the local city are investigated by the questionnaire survey.The covariance structure about the eco-consciousness is analyzed with the database of the questionnaire survey by structural equation modeling.As the result,it can be confirmed with the structural equation model that the individual environmental consciousness is strongly related with the intention of self-sacrifice and is influenced with the local interaction of the individual connections.On the other hand,the intention of modal shift for the commuting mode is analyzed with the database of the questionnaire survey.It can be found out that the environmental consciousness is not statistically significant for commuting mode choice with the present poor level of service of public transport.However,the intention of self-sacrifice for the prevention of the global warming is statistically confirmed as the factor of modal shift with the operation of eco-commuting bus service with the RP/SP integrated estimation method.As the result,the multi-agent simulation system with social interaction model for eco consciousness is developed to measure the effect of the eco-commuting promotion.For the purpose,the carbon dioxide emission is estimated based on traffic demand and road network condition in the traffic environm
文摘As university campuses look to decrease their greenhouse gas emissions, plug-in electric buses may provide a low carbon alternative to conventionally fossil-powered buses. This study investigates the viability for Unitrans, the bus service for the greater Davis area and the university campus, to replace current compressed natural gas buses with plug-in electric versions. This study presents an inventory of market available electric buses, their associated costs, incentives, and infrastructure concerns, and compares projected energy use, net present cost, and greenhouse gas emissions with their CNG counterparts. ADVISOR vehicle simulation software is used to estimate the energy use of a typical electric bus (New Flyer Xcelsior XE40 300 kW) and compare to the current CNG model (Orion V) along an actual Unitrans route. The model estimates that the selected bus can travel 146 miles on a single charge, with a fuel economy of 1.75 kWh per mile, which meets the service requirements. Results for bus replacement schedules between 5 and 49 in the 12-year analysis period indicate that between 1600 and 22,000 MT of carbon can be avoided. The net present cost analysis indicates that the potential savings from the replacement of a single CNG bus with an electric bus (with available incentives) ranges from $146,000 - $211,000 per bus over its lifetime, depending on infrastructure costs.
文摘针对煤矿监控系统采用有线通信方式无法实现信息灵活采集的问题,构建了基于VB6.0的无线瓦斯监测系统,主要介绍了基于VB6.0的无线瓦斯监测系统软件的设计。该软件通过CAN总线网络接收数据采集终端发送的瓦斯数据信息,根据数据帧内容确定作业地点、作业人员、瓦斯浓度,并将数据存储在SQL Server 2000数据库中,从而实现了瓦斯浓度超限报警、实时数据显示、人员定位信息查询等功能。