CO_(2) in natural gas(NG)is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature,which can cause a block of equipment.M...CO_(2) in natural gas(NG)is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature,which can cause a block of equipment.Meanwhile,CO_(2) will also affect the calorific value of NG.Based on the above reasons,CO_(2) must be removed during the NG liquefaction process.Compared with conventional methods,cryogenic technologies for CO_(2) removal from NG have attracted wide attention due to their nonpolluting and low-cost advantages.Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of byproduct liquid CO_(2).In this paper,the phase behavior of the CH_(4)-CO_(2) binary mixture is summarized,which provides a basis for the process design of cryogenic CO_(2) removal from NG.Then,the detailed techniques of design and optimization for cryogenic CO_(2) removal in recent years are summarized,including the gas-liquid phase change technique and the gas-solid phase change technique.Finally,several improvements for further development of the cryogenic CO_(2) removal process are proposed.The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.展开更多
Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial l...Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.展开更多
文摘CO_(2) in natural gas(NG)is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature,which can cause a block of equipment.Meanwhile,CO_(2) will also affect the calorific value of NG.Based on the above reasons,CO_(2) must be removed during the NG liquefaction process.Compared with conventional methods,cryogenic technologies for CO_(2) removal from NG have attracted wide attention due to their nonpolluting and low-cost advantages.Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of byproduct liquid CO_(2).In this paper,the phase behavior of the CH_(4)-CO_(2) binary mixture is summarized,which provides a basis for the process design of cryogenic CO_(2) removal from NG.Then,the detailed techniques of design and optimization for cryogenic CO_(2) removal in recent years are summarized,including the gas-liquid phase change technique and the gas-solid phase change technique.Finally,several improvements for further development of the cryogenic CO_(2) removal process are proposed.The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.
文摘Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.