Magnesite-bearing garnet Iherzolite from the Altyn Tagh, associated with garnet pyroxenite, and garnet-bearing felsic gneiss, crops out as lenses in Proterozoic gneiss about 100 km east of the Jianggelasayi River. The...Magnesite-bearing garnet Iherzolite from the Altyn Tagh, associated with garnet pyroxenite, and garnet-bearing felsic gneiss, crops out as lenses in Proterozoic gneiss about 100 km east of the Jianggelasayi River. The garnet Iherzolite, together with the eclogite in western Jianggelasayi, composes a high-pressure to ultrahigh-pressure metamorphic belt in the southern margin of the Altyn Tagh. Parageneses of minerals from magnesite-bearing garnet Iherzolite indicate that the rock evolved a multi-stage metamorphism. The peak-stage metamorphism produces an assemblage of Grt+Ol+Opx+Cpx±Mgs, in which A12O3 content of Opxis very low (0.30-0.66wt%). The calculated P-T condition of the peak stage is 3.8-5.lGPa and 880-970°C, some exsolution rods of clinopyroxene and rutile occur in the Grt and magnesite is rimed by dolomite and orthopyroxene, all implying that the peak stage was a UHP metamorphic process. Together with regional geological studies, isotopic dating and the discovery of coesite inclusions in展开更多
The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved...The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume. The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmen- ite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate ig- neous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing lherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deep- subduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.展开更多
Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and h...Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.展开更多
基金This work was supported by the National "973" Project (Grant No. G1999075508)the National Natural Science Foundation of China (Grant Nos. 49972063 and 40032010) the Teacher Fund of the Ministry of Education, and the Opening Fund of Key Laboratory of
文摘Magnesite-bearing garnet Iherzolite from the Altyn Tagh, associated with garnet pyroxenite, and garnet-bearing felsic gneiss, crops out as lenses in Proterozoic gneiss about 100 km east of the Jianggelasayi River. The garnet Iherzolite, together with the eclogite in western Jianggelasayi, composes a high-pressure to ultrahigh-pressure metamorphic belt in the southern margin of the Altyn Tagh. Parageneses of minerals from magnesite-bearing garnet Iherzolite indicate that the rock evolved a multi-stage metamorphism. The peak-stage metamorphism produces an assemblage of Grt+Ol+Opx+Cpx±Mgs, in which A12O3 content of Opxis very low (0.30-0.66wt%). The calculated P-T condition of the peak stage is 3.8-5.lGPa and 880-970°C, some exsolution rods of clinopyroxene and rutile occur in the Grt and magnesite is rimed by dolomite and orthopyroxene, all implying that the peak stage was a UHP metamorphic process. Together with regional geological studies, isotopic dating and the discovery of coesite inclusions in
基金the National Key Basic Research Program of China(Grant No. 1999075508) the National Natural Science Foundation of China(Grant Nos.40372088,49972063 , 140032010-c)+1 种基金the Cadreman Teacher Foundation of the Ministry of Education of China (Grant No. 40133020) the Open Foundation of the Laboratory of Orogen and Basin of the Ministry of Education of Peking University.
文摘The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume. The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmen- ite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate ig- neous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing lherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deep- subduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206)。
文摘Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.