期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于实时战略游戏重放记录数据编码和机器学习的游戏获胜者预测
1
作者
王韦清
王全迪
周杰
《计算机应用》
CSCD
北大核心
2021年第S01期87-92,共6页
对实时战略(RTS)游戏仿真平台μRTS自带的RTS游戏AI机器人之间进行游戏比赛产生的重放记录数据进行采样,用独热编码对采样点数据中的游戏玩家在游戏中的状态和动作信息进行编码,利用卷积神经网络、支持向量机和K-近邻等机器学习算法对RT...
对实时战略(RTS)游戏仿真平台μRTS自带的RTS游戏AI机器人之间进行游戏比赛产生的重放记录数据进行采样,用独热编码对采样点数据中的游戏玩家在游戏中的状态和动作信息进行编码,利用卷积神经网络、支持向量机和K-近邻等机器学习算法对RTS游戏AI机器人在游戏比赛中的获胜者进行预测。实验结果表明,结合给出的编码方法和机器学习算法预测RTS游戏获胜者的准确率与已有方法相比有显著提高,预测结果ROC曲线的AUC值较高。
展开更多
关键词
实时策略游戏
游戏AI机器人
重放记录数据编码
机器学习
游戏获胜者预测
下载PDF
职称材料
题名
基于实时战略游戏重放记录数据编码和机器学习的游戏获胜者预测
1
作者
王韦清
王全迪
周杰
机构
华南理工大学数学学院
华南理工大学继续教育学院
广东省计算机网络重点实验室(华南理工大学)
出处
《计算机应用》
CSCD
北大核心
2021年第S01期87-92,共6页
文摘
对实时战略(RTS)游戏仿真平台μRTS自带的RTS游戏AI机器人之间进行游戏比赛产生的重放记录数据进行采样,用独热编码对采样点数据中的游戏玩家在游戏中的状态和动作信息进行编码,利用卷积神经网络、支持向量机和K-近邻等机器学习算法对RTS游戏AI机器人在游戏比赛中的获胜者进行预测。实验结果表明,结合给出的编码方法和机器学习算法预测RTS游戏获胜者的准确率与已有方法相比有显著提高,预测结果ROC曲线的AUC值较高。
关键词
实时策略游戏
游戏AI机器人
重放记录数据编码
机器学习
游戏获胜者预测
Keywords
Real
Time
Strategy(RTS)
game
game
Artificial
Intelligence
robot
replay
data
encoding
machine
learning
game
winner
prediction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于实时战略游戏重放记录数据编码和机器学习的游戏获胜者预测
王韦清
王全迪
周杰
《计算机应用》
CSCD
北大核心
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部