期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向不均衡分类的隶属度加权模糊支持向量机 被引量:7
1
作者 杨志民 王甜甜 邵元海 《计算机工程与应用》 CSCD 北大核心 2018年第2期68-75,共8页
针对不均衡分类问题,提出了一种基于隶属度加权的模糊支持向量机模型。使用传统支持向量机对样本进行训练,并通过样本点与所得分类超平面之间的距离构造模糊隶属度,这不仅能够消除噪点和野值点的影响,而且可以在一定程度上约减样本;利... 针对不均衡分类问题,提出了一种基于隶属度加权的模糊支持向量机模型。使用传统支持向量机对样本进行训练,并通过样本点与所得分类超平面之间的距离构造模糊隶属度,这不仅能够消除噪点和野值点的影响,而且可以在一定程度上约减样本;利用正负类的平均隶属度和样本数量求得平衡调节因子,消除数据不平衡时造成的分类超平面的偏移现象;通过实验结果验证了该算法的可行性和有效性。实验结果表明,该算法能有效提高分类精度,特别是对不平衡数据效果更加明显,在训练速度和分类性能上比传统支持向量机和模糊支持向量机有进一步的提升。 展开更多
关键词 模糊支持向量机 加权模糊支持向量机 分类超平面 模糊隶属度 平衡调节因子
下载PDF
核对齐多核模糊支持向量机 被引量:8
2
作者 何强 张娇阳 《智能系统学报》 CSCD 北大核心 2019年第6期1163-1169,共7页
支持向量机(SVMs)是当前被广泛使用的机器学习技术,其通过最优分割超平面来提高分类器的泛化能力,在实际应用中表现优异。然而SVM也存在易受噪声影响,以及核函数选择等难题。针对以上问题,本文将基于核对齐的多核学习方法引入到模糊支... 支持向量机(SVMs)是当前被广泛使用的机器学习技术,其通过最优分割超平面来提高分类器的泛化能力,在实际应用中表现优异。然而SVM也存在易受噪声影响,以及核函数选择等难题。针对以上问题,本文将基于核对齐的多核学习方法引入到模糊支持向量机(fuzzy support vector machine,FSVM)中,提出了模糊多核支持向量机模型(multiple kernel fuzzy support vector machine,MFSVM)。MFSVM通过模糊粗糙集方法计算每一样例隶属度;其次,利用核对齐的多核方法计算每一单核权重,并将组合核引入到模糊支持向量机中。该方法不仅提高了支持向量机的抗噪声能力,也有效避免了核选择难题。在UCI数据库上进行实验,结果表明本文所提方法具有较高的分类精度,验证了该方法的可行性与有效性。 展开更多
关键词 核函数 支持向量机 粗糙集理论 监督学习 模糊分类 模糊隶属函数 鲁棒性 噪声
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部