A novel framework for fuzzy modeling and model-based control design is described. Based on the theory of fuzzy constraint processing, the fuzzy model can be viewed as a generalized Takagi-Sugeno (TS) fuzzy model wit...A novel framework for fuzzy modeling and model-based control design is described. Based on the theory of fuzzy constraint processing, the fuzzy model can be viewed as a generalized Takagi-Sugeno (TS) fuzzy model with fuzzy functional consequences. It uses multivariate antecedent membership functions obtained by granular-prototype fuzzy clustering methods and consequent fuzzy equations obtained by fuzzy regression techniques. Constrained optimization is used to estimate the consequent parameters, where the constraints are based on control-relevant a priori knowledge about the modeled process. The fuzzy-constraint-based approach provides the following features. 1) The knowledge base of a constraint-based fuzzy model can incorporate information with various types of fuzzy predicates. Consequently, it is easy to provide a fusion of different types of knowledge. The knowledge can be from data-driven approaches and/or from controlrelevant physical models. 2) A corresponding inference mechanism for the proposed model can deal with heterogeneous information granules. 3) Both numerical and linguistic inputs can be accepted for predicting new outputs. The proposed techniques are demonstrated by means of two examples: a nonlinear function-fitting problem and the well-known Box-Jenkins gas furnace process. The first example shows that the proposed model uses fewer fuzzy predicates achieving similar results with the traditional rule-based approach, while the second shows the performance can be significantly improved when the control-relevant constraints are considered.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic...Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.展开更多
Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theor...Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and many others. In this paper, we initiate some new topological tools for data granulation using rough set approximations. Moreover, we define some topological measures of data granulation in topological I formation systems. Topological generalizations using δβ-open sets and their applications of information granulation are developed.展开更多
The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid mode...The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.展开更多
针对风速点预测无法对预测结果进行风险评估、区间预测难以满足电网精细化要求,以及现有静态预测方法难以描述风速序列长期相关性的现象,提出一种基于模糊信息粒化(Fuzzy Information Granulation,FIG)和长短期记忆(Long Short-Term Mem...针对风速点预测无法对预测结果进行风险评估、区间预测难以满足电网精细化要求,以及现有静态预测方法难以描述风速序列长期相关性的现象,提出一种基于模糊信息粒化(Fuzzy Information Granulation,FIG)和长短期记忆(Long Short-Term Memory,LSTM)网络的动态预测模型。该方法先对风速序列进行模糊信息粒化,提取出粒化后数据的最大值 (区间上界)、最小值(区间下界)和平均值。其次采用ADAM算法优化的LSTM网络对各粒化数据进行动态建模,得到能描述风速波动性的区间预测结果和点预测结果。算列表明,所提动态模型的预测效果比其它基本模型的预测效果更好。展开更多
文摘A novel framework for fuzzy modeling and model-based control design is described. Based on the theory of fuzzy constraint processing, the fuzzy model can be viewed as a generalized Takagi-Sugeno (TS) fuzzy model with fuzzy functional consequences. It uses multivariate antecedent membership functions obtained by granular-prototype fuzzy clustering methods and consequent fuzzy equations obtained by fuzzy regression techniques. Constrained optimization is used to estimate the consequent parameters, where the constraints are based on control-relevant a priori knowledge about the modeled process. The fuzzy-constraint-based approach provides the following features. 1) The knowledge base of a constraint-based fuzzy model can incorporate information with various types of fuzzy predicates. Consequently, it is easy to provide a fusion of different types of knowledge. The knowledge can be from data-driven approaches and/or from controlrelevant physical models. 2) A corresponding inference mechanism for the proposed model can deal with heterogeneous information granules. 3) Both numerical and linguistic inputs can be accepted for predicting new outputs. The proposed techniques are demonstrated by means of two examples: a nonlinear function-fitting problem and the well-known Box-Jenkins gas furnace process. The first example shows that the proposed model uses fewer fuzzy predicates achieving similar results with the traditional rule-based approach, while the second shows the performance can be significantly improved when the control-relevant constraints are considered.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
基金This work was supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2010-D00065)the Grant of the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center of Healthcare Technology Development)the GRRC program of Gyeonggi province[GRRC SUWON 2011-B2,Center for U-city Security&Surveillance Technology].
文摘Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.
文摘Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and many others. In this paper, we initiate some new topological tools for data granulation using rough set approximations. Moreover, we define some topological measures of data granulation in topological I formation systems. Topological generalizations using δβ-open sets and their applications of information granulation are developed.
基金This work was supported by Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]The National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.