With its dense population, rapid economic growth and dramatic rate of urbanization, China is experiencing extreme air pollution problems. This is particularly the case in Central-Eastern China (CEC), where the two m...With its dense population, rapid economic growth and dramatic rate of urbanization, China is experiencing extreme air pollution problems. This is particularly the case in Central-Eastern China (CEC), where the two major cities of Beijing and Tianjin are located, in the Yangtze-River Delta (YRD) with the city of Shanghai, and in the Pearl-River Delta (PRD) with the mega-city of Gnangzhou. Space observations show that the atmospheric aerosol load in these three regions is considerably higher than, for example, in the urbanized regions of Europe and North America. The high aerosol concentrations in these regions have raised many environmental problems, such as impact on human health, visibility, and climate changes. In this paper, several crucial issues regarding aerosol pollution in these highly populated regions (CEC, YRD, and PRD) are discussed, including (1) when the aerosol load starts to rapidly increase in these regions; (2) how the high aerosol concentrations affects the environment; and (3) what the potential consequences are under possible low aerosol load in these regions. Discussion on these crucial issues might lead to some insight for better understanding of the characterizations of aerosol pollution due to the rapid economical development in China.展开更多
The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and hu...The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and th展开更多
基金supported under Ministry of Science and Technology Grant No.2006BAC12B00National Natural Science Foundation of China (NSFC) Grant No.40705046+1 种基金Shanghai Science and Technology Commission Grant No.08230705200The National Center for Atmospheric Research is sponsored by the National Science Foundation and operated by UCAR
文摘With its dense population, rapid economic growth and dramatic rate of urbanization, China is experiencing extreme air pollution problems. This is particularly the case in Central-Eastern China (CEC), where the two major cities of Beijing and Tianjin are located, in the Yangtze-River Delta (YRD) with the city of Shanghai, and in the Pearl-River Delta (PRD) with the mega-city of Gnangzhou. Space observations show that the atmospheric aerosol load in these three regions is considerably higher than, for example, in the urbanized regions of Europe and North America. The high aerosol concentrations in these regions have raised many environmental problems, such as impact on human health, visibility, and climate changes. In this paper, several crucial issues regarding aerosol pollution in these highly populated regions (CEC, YRD, and PRD) are discussed, including (1) when the aerosol load starts to rapidly increase in these regions; (2) how the high aerosol concentrations affects the environment; and (3) what the potential consequences are under possible low aerosol load in these regions. Discussion on these crucial issues might lead to some insight for better understanding of the characterizations of aerosol pollution due to the rapid economical development in China.
基金Major Project of High-resolution Earth Observation System
文摘The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and th