Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state s...Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state spark plasma sintering processes.The CNTs were well-dispersed in the Al particles using the nSiC as a solid mixing agent.Two different types of multi-walled CNTs were used to add different amounts of CNTs in the same volume.The ball milled Al—CNT—nSiC and Al—CNT powder mixtures were fully densified and demonstrated good adhesion with no serious microcracks and pores within an FG multilayer composite.Each layer contained different amounts of the CNTs,and the nSiC additions showed different microstructures and hardness.It is possible to control the characteristics of the FG multilayer composite through the efficient design of an Al—CNT—nSiC gradient layer.This concept offers a feasible approach for fabricating the dualnanoparticulate-reinforced Al matrix nanocomposites and can be applied to other scenarios such as polymer and ceramic systems.展开更多
A mathematic model is developed with viscosity of molten matrix,centrifugalforce,casting temperature,mold temperature and other parameters taken intoconsideration for preditction of the distribution of reinforced part...A mathematic model is developed with viscosity of molten matrix,centrifugalforce,casting temperature,mold temperature and other parameters taken intoconsideration for preditction of the distribution of reinforced particles during centrifugalcasting of FGM,and the simulation of distribution of reinforced particles and thesolidification process during centrifugal casting is performed with the aid of computergraphics.SiC_p/A356 FGM is fabricated by centrifugal casting.The results of computersimulation of distribution of reinforced particles are in good agreement with experimentalobservations.展开更多
文摘Functionally graded(FG) carbon nanotubes(CNT) and nano-silicon carbide(nSiC) reinforced aluminium(Al)matrix composites have been successfully fabricated using high-energy ball milling followed by solid-state spark plasma sintering processes.The CNTs were well-dispersed in the Al particles using the nSiC as a solid mixing agent.Two different types of multi-walled CNTs were used to add different amounts of CNTs in the same volume.The ball milled Al—CNT—nSiC and Al—CNT powder mixtures were fully densified and demonstrated good adhesion with no serious microcracks and pores within an FG multilayer composite.Each layer contained different amounts of the CNTs,and the nSiC additions showed different microstructures and hardness.It is possible to control the characteristics of the FG multilayer composite through the efficient design of an Al—CNT—nSiC gradient layer.This concept offers a feasible approach for fabricating the dualnanoparticulate-reinforced Al matrix nanocomposites and can be applied to other scenarios such as polymer and ceramic systems.
文摘A mathematic model is developed with viscosity of molten matrix,centrifugalforce,casting temperature,mold temperature and other parameters taken intoconsideration for preditction of the distribution of reinforced particles during centrifugalcasting of FGM,and the simulation of distribution of reinforced particles and thesolidification process during centrifugal casting is performed with the aid of computergraphics.SiC_p/A356 FGM is fabricated by centrifugal casting.The results of computersimulation of distribution of reinforced particles are in good agreement with experimentalobservations.