A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem...A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.展开更多
Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of ...Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of paramount importance to gauge the reliabilities and accuracies of these databases. Although many properties have been predicted accurately in these databases,electronic band gap is well known to be underestimated by traditional density functional theory(DFT) calculations under local density approximation(LDA), which becomes a challenging problem for materials database building. Here, we introduce MaterialGo(http://www.pkusam.com/data-base.html), a new database calculating the band structures of crystals using both Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional and Heyd-Scuseria-Ernzerhof(HSE) hybrid functional.Comparing different PBE databases, it is found that their band gaps are consistent when no U parameter is used for transition metal d-state or heavy element f-state to correct their self-interaction error, but rather different when PBE+U are used, mostly because of the different values of U used in different database. HSE calculations under standard parameters will give larger band gaps that are closer to experiment. Based on the high-throughput HSE calculations over 10000 crystal structures, we might have a better understanding of the relationship between crystal structures and electronic structures, which will help us to further explore material genome science and engineering.展开更多
The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the...The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.展开更多
The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide d...The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide dismutase (SOD) and peroxidase (POD) of flag leaves at the late growth stages were studied by using C Liangyou series of hybrid rice combinitions as material and Shanyou 63 as control. The C Liangyou series of hybrid rice combinations used in the experiment included C Liangyou 396, C Liangyou 87, C Liangyou 755 and C Liangyou 34, which all used C815S as male sterile line. The contents of chlorophyll, soluble sugars and soluble proteins in flag leaves of the C Liangyou series combinations at the late growth stages were higher than those of the control, whereas the TBARS content was lower than that of the control. The activities of SOD and POD were significantly higher than those of the control on the 7th day after heading, and then decreased slowly. ~bps, value and qp value of flag leaves decreased at the late growth stages, and these two parameters in flag leaves of the C Liangyou series combinations were higher than those of the control, while the qN value increased at the late growth stages and was lower than that of the control. The net photosynthetic rate of flag leaves at the late growth stage was higher compared with the control. These results suggest that slow senescence and strong photosynthetic capability in flag leaves at the late growth stages are the physiological basis of the C Liangyou series combinations.展开更多
Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced ...Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2~ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiOdrio2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (AR/Ro = 1.02), ultrafast response/ recovery time (T 〈 20 s), and remarkable reproducibility at room tem- perature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer.展开更多
Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional de...Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program.展开更多
Hybrid density functional theory is employed to systematically investigate the structural,magnetic,vibrational,thermodynamic properties of plutonium monocarbide(Pu C and Pu C0.75).For comparison,the results obtained...Hybrid density functional theory is employed to systematically investigate the structural,magnetic,vibrational,thermodynamic properties of plutonium monocarbide(Pu C and Pu C0.75).For comparison,the results obtained by DFT,DFT + U are also given.For Pu C and Pu C0.75,Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic(AFM) structure.The calculated phonon spectra suggest that Pu C and Pu C0.75 are dynamically stable.Values of the Helmholtz free energy ?F,internal energy ?E,entropy S,and constant-volume specific heat Cv of Pu C and Pu C0.75 are given.The results are in good agreement with available experimental or theoretical data.As for the chemical bonding nature,the difference charge densities,the partial densities of states and the Bader charge analysis suggest that the Pu–C bonds of Pu C and Pu C0.75 have a mixture of covalent character and ionic character.The effect of carbon vacancy on the chemical bonding is also discussed in detail.We expect that our study can provide some useful reference for further experimental research on the phonon density of states,thermodynamic properties of the plutonium monocarbide.展开更多
The polyacidic character of polyoxometalate(POM)clusters endows high ionic conductivity,making these clusters good candidates for solar and fuel cells.Covalent bonding of clusters to polymer chains creates poly(POM)s ...The polyacidic character of polyoxometalate(POM)clusters endows high ionic conductivity,making these clusters good candidates for solar and fuel cells.Covalent bonding of clusters to polymer chains creates poly(POM)s that are polyelectrolytes with both cluster functions and polymer performance.Thus,solution-processable poly(POM)s are expected to be used as key materials in advanced devices.Further understanding of poly(POM)s will optimize the preparation process and improve device performance.Herein,we report a study of the first linear poly(POM)s by directly visualizing the chains using scanning transmission electron microscopy.Compared with traditional polymers,individual clusters of poly(POM)s can be directly visualized because of the resistance to electron-beam damage and the high contrast of the tungsten POM pendants.Thus,cluster aggregates with diverse shapes were observed.Counting the number of clusters in the aggregates allowed the degree of polymerization and molecular weight distribution to be determined,and studying the aggregate shapes revealed the presence of a curved semirigid chain in solution.Further study of shape diversity revealed that strong interactions between clusters determine the diverse chain shapes formed during solution processing.Fundamental insight is critical to understanding the formation of poly(POM)films from solutions as key functional materials,especially for fuel and solar cells.展开更多
Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu...Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.展开更多
文摘A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.
基金supported by the National Key R&D Program of China(Grant No.2016YFB0700600)the Shenzhen Science and Technology Research Grant(Grant No.ZDSYS201707281026184)+1 种基金the Guangdong Key-lab Project(Grant No.2017B0303010130)Wang is supported by the Director Office of Science(SC)、Basic Energy Science(BES)、Materials Science and Engineering Division (MSED) of the US Department of Energy(DOE)under Contract No.DE-AC02-05CH11231 through the Materials Theory program(KC2301)
文摘Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a database is only useful if its content is reliable and sufficiently accurate. It is thus of paramount importance to gauge the reliabilities and accuracies of these databases. Although many properties have been predicted accurately in these databases,electronic band gap is well known to be underestimated by traditional density functional theory(DFT) calculations under local density approximation(LDA), which becomes a challenging problem for materials database building. Here, we introduce MaterialGo(http://www.pkusam.com/data-base.html), a new database calculating the band structures of crystals using both Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional and Heyd-Scuseria-Ernzerhof(HSE) hybrid functional.Comparing different PBE databases, it is found that their band gaps are consistent when no U parameter is used for transition metal d-state or heavy element f-state to correct their self-interaction error, but rather different when PBE+U are used, mostly because of the different values of U used in different database. HSE calculations under standard parameters will give larger band gaps that are closer to experiment. Based on the high-throughput HSE calculations over 10000 crystal structures, we might have a better understanding of the relationship between crystal structures and electronic structures, which will help us to further explore material genome science and engineering.
文摘The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
基金supported by the National High Technology Research and Development Project of China(Grant No.2006AA100101)the Agricultural Technological Results Transformation Fund,China(Grant Nos.2007GB2D200226 and 2008GB2D200227)
文摘The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide dismutase (SOD) and peroxidase (POD) of flag leaves at the late growth stages were studied by using C Liangyou series of hybrid rice combinitions as material and Shanyou 63 as control. The C Liangyou series of hybrid rice combinations used in the experiment included C Liangyou 396, C Liangyou 87, C Liangyou 755 and C Liangyou 34, which all used C815S as male sterile line. The contents of chlorophyll, soluble sugars and soluble proteins in flag leaves of the C Liangyou series combinations at the late growth stages were higher than those of the control, whereas the TBARS content was lower than that of the control. The activities of SOD and POD were significantly higher than those of the control on the 7th day after heading, and then decreased slowly. ~bps, value and qp value of flag leaves decreased at the late growth stages, and these two parameters in flag leaves of the C Liangyou series combinations were higher than those of the control, while the qN value increased at the late growth stages and was lower than that of the control. The net photosynthetic rate of flag leaves at the late growth stage was higher compared with the control. These results suggest that slow senescence and strong photosynthetic capability in flag leaves at the late growth stages are the physiological basis of the C Liangyou series combinations.
文摘Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2~ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiOdrio2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (AR/Ro = 1.02), ultrafast response/ recovery time (T 〈 20 s), and remarkable reproducibility at room tem- perature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer.
文摘Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21371160 and 21401173)
文摘Hybrid density functional theory is employed to systematically investigate the structural,magnetic,vibrational,thermodynamic properties of plutonium monocarbide(Pu C and Pu C0.75).For comparison,the results obtained by DFT,DFT + U are also given.For Pu C and Pu C0.75,Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic(AFM) structure.The calculated phonon spectra suggest that Pu C and Pu C0.75 are dynamically stable.Values of the Helmholtz free energy ?F,internal energy ?E,entropy S,and constant-volume specific heat Cv of Pu C and Pu C0.75 are given.The results are in good agreement with available experimental or theoretical data.As for the chemical bonding nature,the difference charge densities,the partial densities of states and the Bader charge analysis suggest that the Pu–C bonds of Pu C and Pu C0.75 have a mixture of covalent character and ionic character.The effect of carbon vacancy on the chemical bonding is also discussed in detail.We expect that our study can provide some useful reference for further experimental research on the phonon density of states,thermodynamic properties of the plutonium monocarbide.
基金by the National Natural Science Foundation of China(Nos.21334003 and 21674052).
文摘The polyacidic character of polyoxometalate(POM)clusters endows high ionic conductivity,making these clusters good candidates for solar and fuel cells.Covalent bonding of clusters to polymer chains creates poly(POM)s that are polyelectrolytes with both cluster functions and polymer performance.Thus,solution-processable poly(POM)s are expected to be used as key materials in advanced devices.Further understanding of poly(POM)s will optimize the preparation process and improve device performance.Herein,we report a study of the first linear poly(POM)s by directly visualizing the chains using scanning transmission electron microscopy.Compared with traditional polymers,individual clusters of poly(POM)s can be directly visualized because of the resistance to electron-beam damage and the high contrast of the tungsten POM pendants.Thus,cluster aggregates with diverse shapes were observed.Counting the number of clusters in the aggregates allowed the degree of polymerization and molecular weight distribution to be determined,and studying the aggregate shapes revealed the presence of a curved semirigid chain in solution.Further study of shape diversity revealed that strong interactions between clusters determine the diverse chain shapes formed during solution processing.Fundamental insight is critical to understanding the formation of poly(POM)films from solutions as key functional materials,especially for fuel and solar cells.
基金supported by the Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University(No.K19-534202-002)the National Natural Science Foundation of China(No.21978261)the Zhejiang Provincial Key Research and Development Program of China(No.2021C01030).
文摘Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices.