With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the po...With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.展开更多
利用FACE(Free Air Carbon-Dioxide Enrichment)平台技术,研究了低氮(125kg/hm2,以纯N计)和常氮(250kg/hm2)水平下,高浓度CO2(周围大气CO2浓度+200μmol/mol)对水稻不同生育期功能叶N代谢关键酶活性的影响。结果表明,高浓度CO2提高了叶...利用FACE(Free Air Carbon-Dioxide Enrichment)平台技术,研究了低氮(125kg/hm2,以纯N计)和常氮(250kg/hm2)水平下,高浓度CO2(周围大气CO2浓度+200μmol/mol)对水稻不同生育期功能叶N代谢关键酶活性的影响。结果表明,高浓度CO2提高了叶片硝酸还原酶和蛋白水解酶的活性,两者在常N下的响应程度大于在低N下的响应程度;高浓度CO2降低了低N下叶片谷氨酰胺合成酶和谷氨酸脱氢酶(NADH-GDH)活性,常N水平下酶活性的下降趋势得到改变或缓解。由此可见,高浓度CO2条件下NO3-转化为NH4+加速,而NH4+进一步同化为有机N却受阻,而且,由于后期蛋白水解加速,将进一步加剧叶片N含量的下降。这是水稻叶片N含量下降的内在因素。而增施N肥,有利于同化酶的表达,降低叶片蛋白水解酶活力,从而缓解叶片N含量的下降。展开更多
A strong fibrinolytic activity was demonstrated in the Semen Sojae Praeparatum(SSP), which is a famous traditional Chinese medicine. To study the activities and dynamic changes of fibrinolytic enzyme, standard fibrin ...A strong fibrinolytic activity was demonstrated in the Semen Sojae Praeparatum(SSP), which is a famous traditional Chinese medicine. To study the activities and dynamic changes of fibrinolytic enzyme, standard fibrin plate was used to determine the fibrinolytic activity. For the first time fibrinolytic enzyme was found during the fermentation of SSP and the fibrinolytic activities of samples were shown to increase significantly over time. In the "yellow cladding" stage, the fibrinolytic activity was 619.75 IU/g. On day 6, 12 and 15 of the "secondary fermentation" stage, the fibrinolytic activity was 711.49 IU/g, 866.67 IU/g, 1 022.31 IU/g, respectively. The results indicate that fibrinolytic enzyme was generated during the fermentation of SSP and it displayed increasing activity which peaked at the "secondary fermentation" stage. The fibrinolytic enzyme was found to not only degrades fibrin directly, but also activate plasminogen to do so.展开更多
【目的】认识和了解硝尔库勒湖可培养放线菌的多样性、功能酶和抗细菌活性特点,为今后的开发和利用奠定基础。【方法】应用可培养技术和基于16S r RNA基因序列的系统发育分析硝尔库勒盐湖沉积物中放线菌的多样性。常规方法检测样品成分...【目的】认识和了解硝尔库勒湖可培养放线菌的多样性、功能酶和抗细菌活性特点,为今后的开发和利用奠定基础。【方法】应用可培养技术和基于16S r RNA基因序列的系统发育分析硝尔库勒盐湖沉积物中放线菌的多样性。常规方法检测样品成分因子,并筛选了嗜盐放线菌的蛋白酶、淀粉酶和酯酶活性;抑菌圈法检测放线菌新种的抗细菌活性。【结果】分离获得了51个OTUs,分属于24个不同的属,其中15个OTUs代表了放线菌新种;链霉菌属是优势菌属,占全部分离菌株数量的16.25%。硝尔库勒湖放线菌类群数量一定程度上受样品成分因子的协同影响。代表新种的菌株展示了良好的功能酶活性和抗细菌活性,其中代表链霉菌新种的菌株XHU5011不仅具有多种酶活性,而且具有强大的抗金黄葡萄球菌、耻垢分枝杆菌和荧光假单胞菌的能力,具有很好的开发潜能。【结论】硝尔库勒盐湖中存在丰富的可培养放线菌多样性,潜藏着大量的放线菌新资源,并且具有很好的功能酶和天然产物挖掘潜力。展开更多
The worldwide application of organophosphorus pesticides(OPs)has promoted agricultural development,but their gradual accumulation in soil and water can seriously affect the central nervous system of humans and other m...The worldwide application of organophosphorus pesticides(OPs)has promoted agricultural development,but their gradual accumulation in soil and water can seriously affect the central nervous system of humans and other mammals.Organophosphorus hydrolase(OPH)is an effective enzyme that can catalyze the degradation of the residual OPs.However,the degradation products such as p-nitrophenol(p-NP)is still toxic.Thus,it is of great significance to develop a multi-functional support that can be simultaneously used for the immobilization of OPH and the further degradation of p-NP.Herein,a visible light assisted enzyme-photocatalytic integrated catalyst was constructed by immobilizing OPH on hollow structured Au-TiO_(2)(named OPH@H-Au-TiO_(2))for the degradation of OPs.The obtained OPH@H-Au-TiO_(2)can degrade methyl parathion to p-NP by OPH and then degrade p-NP to hydroquinone with low toxicity by using H-Au-TiO_(2)under visible light.OPH molecules were immobilized on HAu-TiO_(2)through adsorption method to prepare OPH@H-Au-TiO_(2).After 2.5 h of reaction,methyl parathion is completely degraded,and about 82.64%of the generated p-NP is further degraded into hydroquinone.After reused for 4 times,the OPH@H-Au-TiO_(2)retains more than 80%of the initial degradation activity.This research presents a new insight in designing and constructing multi-functional biocatalyst,which greatly expands the application scenarios and industrial value of enzyme catalysis.展开更多
基金supported by the Genetically Modified Organisms Breeding Major Projects (No. 2009ZX08011-014B, 2009ZX08011-008B)the Major State Basic Research Development Programme of China (No.2009CB119006)the National Natural Science Foundation of China (No. 20877068, 30771254)
文摘With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.
文摘利用FACE(Free Air Carbon-Dioxide Enrichment)平台技术,研究了低氮(125kg/hm2,以纯N计)和常氮(250kg/hm2)水平下,高浓度CO2(周围大气CO2浓度+200μmol/mol)对水稻不同生育期功能叶N代谢关键酶活性的影响。结果表明,高浓度CO2提高了叶片硝酸还原酶和蛋白水解酶的活性,两者在常N下的响应程度大于在低N下的响应程度;高浓度CO2降低了低N下叶片谷氨酰胺合成酶和谷氨酸脱氢酶(NADH-GDH)活性,常N水平下酶活性的下降趋势得到改变或缓解。由此可见,高浓度CO2条件下NO3-转化为NH4+加速,而NH4+进一步同化为有机N却受阻,而且,由于后期蛋白水解加速,将进一步加剧叶片N含量的下降。这是水稻叶片N含量下降的内在因素。而增施N肥,有利于同化酶的表达,降低叶片蛋白水解酶活力,从而缓解叶片N含量的下降。
基金Supported by the National Natural Science Foundation of China(81660664)the Natural Science Foundation of Jiangxi Province(20192ACBL21032,20192BBGL70051,20192BAB205098,20171BAB21 5061,GJJ150844,GJJ160858)+1 种基金Jiangxi Provincial Health and Family Planning Commission(2017Z016)the Natural Science Foundation of Jiangxi University of Traditional Chinese Medicine(2014BS013).
文摘A strong fibrinolytic activity was demonstrated in the Semen Sojae Praeparatum(SSP), which is a famous traditional Chinese medicine. To study the activities and dynamic changes of fibrinolytic enzyme, standard fibrin plate was used to determine the fibrinolytic activity. For the first time fibrinolytic enzyme was found during the fermentation of SSP and the fibrinolytic activities of samples were shown to increase significantly over time. In the "yellow cladding" stage, the fibrinolytic activity was 619.75 IU/g. On day 6, 12 and 15 of the "secondary fermentation" stage, the fibrinolytic activity was 711.49 IU/g, 866.67 IU/g, 1 022.31 IU/g, respectively. The results indicate that fibrinolytic enzyme was generated during the fermentation of SSP and it displayed increasing activity which peaked at the "secondary fermentation" stage. The fibrinolytic enzyme was found to not only degrades fibrin directly, but also activate plasminogen to do so.
文摘【目的】认识和了解硝尔库勒湖可培养放线菌的多样性、功能酶和抗细菌活性特点,为今后的开发和利用奠定基础。【方法】应用可培养技术和基于16S r RNA基因序列的系统发育分析硝尔库勒盐湖沉积物中放线菌的多样性。常规方法检测样品成分因子,并筛选了嗜盐放线菌的蛋白酶、淀粉酶和酯酶活性;抑菌圈法检测放线菌新种的抗细菌活性。【结果】分离获得了51个OTUs,分属于24个不同的属,其中15个OTUs代表了放线菌新种;链霉菌属是优势菌属,占全部分离菌株数量的16.25%。硝尔库勒湖放线菌类群数量一定程度上受样品成分因子的协同影响。代表新种的菌株展示了良好的功能酶活性和抗细菌活性,其中代表链霉菌新种的菌株XHU5011不仅具有多种酶活性,而且具有强大的抗金黄葡萄球菌、耻垢分枝杆菌和荧光假单胞菌的能力,具有很好的开发潜能。【结论】硝尔库勒盐湖中存在丰富的可培养放线菌多样性,潜藏着大量的放线菌新资源,并且具有很好的功能酶和天然产物挖掘潜力。
基金supported by the National Natural Science Foundation of China(Nos.21901058,21908040,and 21878068)Tianjin Enterprise Science and Technology Commissioner,China(21YDTPJC00810)+2 种基金Science Technology Research Project of Higher Education of Hebei Province,China(QN2021045)Hebei Province Postgraduate Innovation Funding Project,China(CXZZSS2021027)National College Student’s Science and Technology Innovation Project,China(202010080038)。
文摘The worldwide application of organophosphorus pesticides(OPs)has promoted agricultural development,but their gradual accumulation in soil and water can seriously affect the central nervous system of humans and other mammals.Organophosphorus hydrolase(OPH)is an effective enzyme that can catalyze the degradation of the residual OPs.However,the degradation products such as p-nitrophenol(p-NP)is still toxic.Thus,it is of great significance to develop a multi-functional support that can be simultaneously used for the immobilization of OPH and the further degradation of p-NP.Herein,a visible light assisted enzyme-photocatalytic integrated catalyst was constructed by immobilizing OPH on hollow structured Au-TiO_(2)(named OPH@H-Au-TiO_(2))for the degradation of OPs.The obtained OPH@H-Au-TiO_(2)can degrade methyl parathion to p-NP by OPH and then degrade p-NP to hydroquinone with low toxicity by using H-Au-TiO_(2)under visible light.OPH molecules were immobilized on HAu-TiO_(2)through adsorption method to prepare OPH@H-Au-TiO_(2).After 2.5 h of reaction,methyl parathion is completely degraded,and about 82.64%of the generated p-NP is further degraded into hydroquinone.After reused for 4 times,the OPH@H-Au-TiO_(2)retains more than 80%of the initial degradation activity.This research presents a new insight in designing and constructing multi-functional biocatalyst,which greatly expands the application scenarios and industrial value of enzyme catalysis.