期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
组合全卷积神经网络和条件随机场的道路分割
被引量:
15
1
作者
宋青松
张超
+2 位作者
陈禹
王兴莉
杨小军
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第8期725-731,共7页
常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于V...
常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于VGG_16深度卷积网络的全卷积网络,实现道路图像端到端的路面和背景分类;然后,利用全连接条件随机场能够实现图像精细分割的特点,采用全连接条件随机场对二分类得到的粗糙边缘再进行平滑优化。针对真实环境下采集的道路分割基准数据库的测试结果表明:该方法获得了98.13%的分割准确率以及每0.84s处理1幅图像的分割速度,具有一定的先进性。
展开更多
关键词
图像模式识别
道路分割
全卷积网络
条件随机场
原文传递
题名
组合全卷积神经网络和条件随机场的道路分割
被引量:
15
1
作者
宋青松
张超
陈禹
王兴莉
杨小军
机构
长安大学信息工程学院
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第8期725-731,共7页
基金
国家自然科学基金资助项目(61201406,61473047)
中央高校基本科研业务费专项资金资助项目(310824162022,300102248201,300102248401)
文摘
常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于VGG_16深度卷积网络的全卷积网络,实现道路图像端到端的路面和背景分类;然后,利用全连接条件随机场能够实现图像精细分割的特点,采用全连接条件随机场对二分类得到的粗糙边缘再进行平滑优化。针对真实环境下采集的道路分割基准数据库的测试结果表明:该方法获得了98.13%的分割准确率以及每0.84s处理1幅图像的分割速度,具有一定的先进性。
关键词
图像模式识别
道路分割
全卷积网络
条件随机场
Keywords
image
pattern
recognition
road
segmentation
fulleonvolutional
neural
network
conditional
random
field
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
组合全卷积神经网络和条件随机场的道路分割
宋青松
张超
陈禹
王兴莉
杨小军
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018
15
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部