Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the...Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.展开更多
For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary con...For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10971166)the National Basic Research Program (No.2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No.[2008]2123)
文摘Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.
基金supported by the Natural Science Foundation of China(No.11361016)the Basic and Frontier Explore Program of Chongqing Municipality,China(No.cstc2018jcyjAX0305)Funds for the Central Universities(No.XDJK2018B032).
文摘For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.