In this paper,the spray characteristics of a double-swirl low-emission combustor are analyzed by using Particle Imaging Velocimetry(PIV)and Planar Laser Induced Fluorescence(PLIF)technologies in an optical three-secto...In this paper,the spray characteristics of a double-swirl low-emission combustor are analyzed by using Particle Imaging Velocimetry(PIV)and Planar Laser Induced Fluorescence(PLIF)technologies in an optical three-sector combustor test rig.Interactions between sectors and the influence of main stage swirl intensity on spray structure are explained.The results illustrate that the swirl intensity has great effect on the flow field and spray structure.The spray cone angle is bigger when the swirl number is 0.7,0.9 than that when the swirl number is 0.5.The fuel distribution zone is larger and the distribution is more uniform when the swirl number is 0.5.The fuel concentration in the center area of the center plane of side sector(Plane 5)is larger than that of the center plane of middle sector(Plane 1).The spray cone angle in Plane 5 is larger than that in Plane 1.The width of spray cone becomes larger with the increase of Fuel-Air Ratio(FAR),whereas the spray cone angle under different fuel-air ratios are absolutely the same.The results of the mechanism of spray organization in this study can be used to support the design of new low-emission combustor.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51306182 and 51406202).
文摘In this paper,the spray characteristics of a double-swirl low-emission combustor are analyzed by using Particle Imaging Velocimetry(PIV)and Planar Laser Induced Fluorescence(PLIF)technologies in an optical three-sector combustor test rig.Interactions between sectors and the influence of main stage swirl intensity on spray structure are explained.The results illustrate that the swirl intensity has great effect on the flow field and spray structure.The spray cone angle is bigger when the swirl number is 0.7,0.9 than that when the swirl number is 0.5.The fuel distribution zone is larger and the distribution is more uniform when the swirl number is 0.5.The fuel concentration in the center area of the center plane of side sector(Plane 5)is larger than that of the center plane of middle sector(Plane 1).The spray cone angle in Plane 5 is larger than that in Plane 1.The width of spray cone becomes larger with the increase of Fuel-Air Ratio(FAR),whereas the spray cone angle under different fuel-air ratios are absolutely the same.The results of the mechanism of spray organization in this study can be used to support the design of new low-emission combustor.