P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on...P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.展开更多
We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells(PSCs)to enhance optoelectronic properties and device stability in the presence of ultraviolet(UV)light.High-quality Cr-do...We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells(PSCs)to enhance optoelectronic properties and device stability in the presence of ultraviolet(UV)light.High-quality Cr-doped ZnO film was prepared by industrially feasible magnetron sputter deposition for the electron transport layer of PSCs.As a means,the influence of the Cr content on the film and device was systematically determined.In-depth device optics and electrical effects were studied using advanced three-dimensional opto-electrical multiphysics rigorous simulations,optimizing the front contact for realizing high performance.The numerical simulation was validated by fabricating PSCs optimized to reach high performance,energy conversion efficiency(ECE)=17.3%,open-circuit voltage(V_(OC))=1.08 V,short-circuit current density(J_(SC))=21.1 mA cm^(-2),and fillfactor(FF)=76%.Finally,a realistic front contact of nanophotonic architecture was proposed while improving broadband light absorption of the solar spectrum and light harvesting,resulting in enhanced quantum efficiency(QE).The nanophotonic PSC enables J_(SC)improvement by~17%while reducing the reflection by 12%,resulting in an estimated conversion efficiency over 23%.It is further demonstrated how the PSCs’UV-stability can be improved without considerably sacrificing optoelectronic performances.Particulars of nanophotonic designed ZnO:Cr front contact,PSCs device,and fabrication process are described.展开更多
Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-...Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-HJ solar cell. In this paper, detailed numerical simulations have been performed to investigate the potential of front surface field (FSF) offered by stack of n-type doped and intrinsic amorphous silicon (a-Si) layers on the front surface of IBC-HJ solar cells. Simulations results clearly indicate that the electric field of FSF should be strong enough to repel minority carries and cumulate major carriers near the front surface. However, the overstrong electric field tends to drive electrons into a-Si layer, leading to severe recombination loss. The n-type doped amorphous silicon (n-a-Si) layer has been optimized in terms of doping level and thickness. The optimized intrinsic amorphous silicon (i-a-Si) layer should be as thin as possible with an energy band gap (Es) larger than 1.4 eV. In addition, the simulations concerning interface defects strongly suggest that FSF is essential when the front surface is not passivated perfectly. Without FSF, the IBC-HJ solar cells may become more sensitive to interface defect density.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA050301)Scientific Research of Hebei Education Department,China(Grant No.QN2017135)
文摘P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.
基金financial support through the Long-term Research Grant Scheme(LRGS/1/2019/UKM-UKM/6/1)their appreciation to Researchers Supporting Project number(RSP-2021/34),King Saud University,Riyadh,Saudi Arabiathe Innovation and Technology Commission of Hong Kong(Project No.GHP/040/19SZ)。
文摘We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells(PSCs)to enhance optoelectronic properties and device stability in the presence of ultraviolet(UV)light.High-quality Cr-doped ZnO film was prepared by industrially feasible magnetron sputter deposition for the electron transport layer of PSCs.As a means,the influence of the Cr content on the film and device was systematically determined.In-depth device optics and electrical effects were studied using advanced three-dimensional opto-electrical multiphysics rigorous simulations,optimizing the front contact for realizing high performance.The numerical simulation was validated by fabricating PSCs optimized to reach high performance,energy conversion efficiency(ECE)=17.3%,open-circuit voltage(V_(OC))=1.08 V,short-circuit current density(J_(SC))=21.1 mA cm^(-2),and fillfactor(FF)=76%.Finally,a realistic front contact of nanophotonic architecture was proposed while improving broadband light absorption of the solar spectrum and light harvesting,resulting in enhanced quantum efficiency(QE).The nanophotonic PSC enables J_(SC)improvement by~17%while reducing the reflection by 12%,resulting in an estimated conversion efficiency over 23%.It is further demonstrated how the PSCs’UV-stability can be improved without considerably sacrificing optoelectronic performances.Particulars of nanophotonic designed ZnO:Cr front contact,PSCs device,and fabrication process are described.
基金Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11274346, 51202285, 61234005, 51172268 and 51402347), the Solar Energy Action Plan of the Chinese Academy of Sciences (Grant Nos. Y1YT064001, Y1YF034001 and Y2YF014001), and Sci. & Tech. Commission Project of Beijing Municipality (Grant No. Z 151100003515003).
文摘Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-HJ solar cell. In this paper, detailed numerical simulations have been performed to investigate the potential of front surface field (FSF) offered by stack of n-type doped and intrinsic amorphous silicon (a-Si) layers on the front surface of IBC-HJ solar cells. Simulations results clearly indicate that the electric field of FSF should be strong enough to repel minority carries and cumulate major carriers near the front surface. However, the overstrong electric field tends to drive electrons into a-Si layer, leading to severe recombination loss. The n-type doped amorphous silicon (n-a-Si) layer has been optimized in terms of doping level and thickness. The optimized intrinsic amorphous silicon (i-a-Si) layer should be as thin as possible with an energy band gap (Es) larger than 1.4 eV. In addition, the simulations concerning interface defects strongly suggest that FSF is essential when the front surface is not passivated perfectly. Without FSF, the IBC-HJ solar cells may become more sensitive to interface defect density.