The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction ...The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction model for the plastic deformation of aluminum alloy AA5052.The micro-macro analysis method combining surface morphology and micro-texture was used to explore the friction behaviors in AA5052 cold forming process.In general,the magnitude(μor m)of friction changes before and after a deformation threshold during ring compression.The maximum change rate of the magnitude(μor m)before and after the deformation threshold is close to 18.5%under the present experimental conditions,and the change rate decreases with increasing loading speed.The lubrication using MoS_(2) is better than that using oil at lower speeds(0.15 mm/s,1.5 mm/s),but the lubrications for MoS_(2) and oil are similar at higher speeds(15 mm/s).The surface roughness,three-dimensional topography,and surface texture of compressed ring have a sudden change around the deformation threshold,which deviate from the previous evolution trend.The increased friction after deformation threshold also promotes the formation of sufficient shear strain layer in the subsurface plane of the compressed ring,and then it hinders the formation of the typical deformation textures withβ-oriented line and promotes the appearance of shear textures such as{001}(110),{111}(uvw)and{hkl}{110)textures.展开更多
Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold co...Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold compression processing of#45(AISI 1045)steel rings,the magnitude of friction and surface roughness(Ra)changes significantly upon reaching a 45%reduction in ring height.For example,the Ra of compressed ring specimens increased by approximately 55%immediately before and after reaching this threshold,compared to an 18% or 25%variation over a 35%-45%or a 45%-55%reduction in height,respectively.The ring compression test conducted by this study indicates that the Coulomb friction coefficient and Tresca friction factor mare 0.105 and 0.22,respectively,when the reduction in height is less than 45%;and 0.11 and 0.24,respectively,when the reduction in height is greater than 45%.展开更多
The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric ...The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric vehicles without a clutch because of big shift impact.To make the shifting process rapid and smooth,a new synchronizer named pressure-controllable friction ring synchronizer(PCFRS)was designed.Initially,the inevitable shortcoming of ILRS was verified by simulation and test.Furthermore,the mechanical characteristics and advantages of the new synchronizer over ILRS were analyzed.Then,the formulations describing the dynamic transmission based on the working mechanism of the PCFRS were established.Finally,the shifting simulation results with PCFRS and ILRS based on the same operating conditions were compared and analyzed.The research shows that the PCFRS can meet the main shifting evaluation index of an AMT without complex control methods,as well as it takes only 0.2406 s to finish the comfortable and zero-speed-difference shifting.The shifting quality of PCFRS is better than that of the ILRS.It lays a foundation for using the new synchronizer as a part of clutchless AMTs equipped in pure electric vehicles.展开更多
基金supports of the National Natural Science Foundation of China(No.51675415)。
文摘The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction model for the plastic deformation of aluminum alloy AA5052.The micro-macro analysis method combining surface morphology and micro-texture was used to explore the friction behaviors in AA5052 cold forming process.In general,the magnitude(μor m)of friction changes before and after a deformation threshold during ring compression.The maximum change rate of the magnitude(μor m)before and after the deformation threshold is close to 18.5%under the present experimental conditions,and the change rate decreases with increasing loading speed.The lubrication using MoS_(2) is better than that using oil at lower speeds(0.15 mm/s,1.5 mm/s),but the lubrications for MoS_(2) and oil are similar at higher speeds(15 mm/s).The surface roughness,three-dimensional topography,and surface texture of compressed ring have a sudden change around the deformation threshold,which deviate from the previous evolution trend.The increased friction after deformation threshold also promotes the formation of sufficient shear strain layer in the subsurface plane of the compressed ring,and then it hinders the formation of the typical deformation textures withβ-oriented line and promotes the appearance of shear textures such as{001}(110),{111}(uvw)and{hkl}{110)textures.
基金National Natural Science Foundation of China(Grant Nos.51675415 and 51335009)the Open Research Fund of the Key Laboratory of High-Performance Complex Manufacturing,Central South University(Kfkt2016-06).
文摘Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold compression processing of#45(AISI 1045)steel rings,the magnitude of friction and surface roughness(Ra)changes significantly upon reaching a 45%reduction in ring height.For example,the Ra of compressed ring specimens increased by approximately 55%immediately before and after reaching this threshold,compared to an 18% or 25%variation over a 35%-45%or a 45%-55%reduction in height,respectively.The ring compression test conducted by this study indicates that the Coulomb friction coefficient and Tresca friction factor mare 0.105 and 0.22,respectively,when the reduction in height is less than 45%;and 0.11 and 0.24,respectively,when the reduction in height is greater than 45%.
基金Supported by National Natural Science Foundation of China(Grant No.51775478)Natural Science Foundation of Hebei Province(Grant Nos.E2020203078,E2020203174)+1 种基金Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2021-11)Graduate Innovation Funding Project of Hebei Province(Grant No.CXZZSS2021063)。
文摘The synchronizer is a key component of automatic mechanical transmission(AMT)equipped in electric vehicles,but the inertial lock-ring synchronizer(ILRS)commonly used there is not suitable especially for pure electric vehicles without a clutch because of big shift impact.To make the shifting process rapid and smooth,a new synchronizer named pressure-controllable friction ring synchronizer(PCFRS)was designed.Initially,the inevitable shortcoming of ILRS was verified by simulation and test.Furthermore,the mechanical characteristics and advantages of the new synchronizer over ILRS were analyzed.Then,the formulations describing the dynamic transmission based on the working mechanism of the PCFRS were established.Finally,the shifting simulation results with PCFRS and ILRS based on the same operating conditions were compared and analyzed.The research shows that the PCFRS can meet the main shifting evaluation index of an AMT without complex control methods,as well as it takes only 0.2406 s to finish the comfortable and zero-speed-difference shifting.The shifting quality of PCFRS is better than that of the ILRS.It lays a foundation for using the new synchronizer as a part of clutchless AMTs equipped in pure electric vehicles.