Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterpart...Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterparts obtained from leveling the geometry-free GPS carrier-phase to code(leveling ionospheric observables,LIOs),and are affected by the satellite and receiver inter-frequency biases(IFBs).Based on the co-location experiments,the effects of extracting error arising from the observational noise and multipath on the PIOs and the LIOs are comparatively assessed,and the considerably reduced effects ranging from 70% to 75% on the PIOs with respect to the LIOs can be verified in our case.In addition,based on 26 consecutive days' GPS observations from two international GNSS service(IGS) sites(COCO,DAEJ) during disturbed ionosphere period,the extracted PIOs and LIOs are respectively used as the input of single-layer ionospheric model to retrieve daily satellite IFBs station-by-station.The minor extracting errors underlying the PIOs in contrast to the LIOs can also be proven by reducing day-to-day scatter and improving between-receiver consistency in the retrieved satellite IFBs values.展开更多
针对观测条件较差时,基于双频观测值的传统变形监测数据处理算法无法快速、可靠地固定原始频点模糊度的局限性,分析了GPS和北斗导航系统BDS不同解算模式下的单历元模糊度固定成功率,提出了基于北斗三频观测值的变形监测数据处理算法。...针对观测条件较差时,基于双频观测值的传统变形监测数据处理算法无法快速、可靠地固定原始频点模糊度的局限性,分析了GPS和北斗导航系统BDS不同解算模式下的单历元模糊度固定成功率,提出了基于北斗三频观测值的变形监测数据处理算法。该算法采用三频模糊度解算(three-carrier ambiguity resolution,TCAR)逐次固定超宽巷、宽巷、原始频点模糊度;在不能可靠固定原始频点模糊度时,通过观测值域恒星日滤波削弱宽巷多路径的影响,采用模糊度固定宽巷进行坐标解算。利用实测数据进行检验后的试算结果表明:TCAR单历元模糊度固定成功率较双频模式有了较大提高,但在观测条件较差时难以保证较高的成功率;而宽巷模糊度固定可达到100%的成功率;经观测值域恒星日滤波后宽巷固定解坐标水平方向均方根(root mean square,RMS)可达到7mm。展开更多
A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization pr...A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.展开更多
This paper presents a fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver fabricated in a 0.13μm CMOS technology.The frequency synthesizer is implemented with an on-chip symmetric inductor...This paper presents a fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver fabricated in a 0.13μm CMOS technology.The frequency synthesizer is implemented with an on-chip symmetric inductor and an on-chip loop filter.A capacitance multiplying approach is proposed in the on-chip loop filter design for area-saving consideration.Pulse-swallow topology with a multistage noise shaping△Σmodulator is adopted in the frequency divider design.The synthesizer generates local oscillating signals at 1571.328 MHz and 1568.259 MHz with a 16.368 MHz reference clock by working in integer and fractional modes.Measurement results show that the phase noise of the synthesizer achieves -91.3 dBc/Hz and -117 dBc/Hz out of band at 100 kHz and 1 MHz frequency offset,separately.The proposed frequency synthesizer consumes 8.6 mA from a 1.2 V power supply and occupies an area of 0.92 mm;.展开更多
针对航空超导全张量系统中高精度的磁场测量需求以及应用特点,采用一种新型频率测量方法可以更精确的测量光泵频率,从而可以更为精确的测量磁场。文中介绍了利用GPS授时信号作为闸门时间来进行频率测量的方法,并重点阐述了其设计方法;...针对航空超导全张量系统中高精度的磁场测量需求以及应用特点,采用一种新型频率测量方法可以更精确的测量光泵频率,从而可以更为精确的测量磁场。文中介绍了利用GPS授时信号作为闸门时间来进行频率测量的方法,并重点阐述了其设计方法;然后给出了该方法在50~300 k Hz的测量结果,试验表明该方法明显优于普通晶振提供闸门时间的频率测量方法,且在该频率段内最大误差小于0.02 Hz,同时验证了该方法达到实用要求且解决了航空超导全张量系统中使用晶振造成的电磁兼容问题及系统小型化问题。展开更多
基金supported by National Basic Research Program of China(Grant No. 2012CB82560X)National Natural Science Foundation of China (Grant Nos. 41174015 and 41074013)
文摘Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning(PPP).The PPP-derived ionospheric observables(PIOs) have identical form with their counterparts obtained from leveling the geometry-free GPS carrier-phase to code(leveling ionospheric observables,LIOs),and are affected by the satellite and receiver inter-frequency biases(IFBs).Based on the co-location experiments,the effects of extracting error arising from the observational noise and multipath on the PIOs and the LIOs are comparatively assessed,and the considerably reduced effects ranging from 70% to 75% on the PIOs with respect to the LIOs can be verified in our case.In addition,based on 26 consecutive days' GPS observations from two international GNSS service(IGS) sites(COCO,DAEJ) during disturbed ionosphere period,the extracted PIOs and LIOs are respectively used as the input of single-layer ionospheric model to retrieve daily satellite IFBs station-by-station.The minor extracting errors underlying the PIOs in contrast to the LIOs can also be proven by reducing day-to-day scatter and improving between-receiver consistency in the retrieved satellite IFBs values.
文摘针对观测条件较差时,基于双频观测值的传统变形监测数据处理算法无法快速、可靠地固定原始频点模糊度的局限性,分析了GPS和北斗导航系统BDS不同解算模式下的单历元模糊度固定成功率,提出了基于北斗三频观测值的变形监测数据处理算法。该算法采用三频模糊度解算(three-carrier ambiguity resolution,TCAR)逐次固定超宽巷、宽巷、原始频点模糊度;在不能可靠固定原始频点模糊度时,通过观测值域恒星日滤波削弱宽巷多路径的影响,采用模糊度固定宽巷进行坐标解算。利用实测数据进行检验后的试算结果表明:TCAR单历元模糊度固定成功率较双频模式有了较大提高,但在观测条件较差时难以保证较高的成功率;而宽巷模糊度固定可达到100%的成功率;经观测值域恒星日滤波后宽巷固定解坐标水平方向均方根(root mean square,RMS)可达到7mm。
基金the National Ministry Innovation Foundation (7130302)
文摘A complete method of synchronization technology of bistatic radar using global position system (GPS) is presented. The pulse per second signal (1PPS) is elaborately modified to increase the time synchronization precision and keep loop locking. A very high time synchronization precision is achieved. Using the modified 1PPS to discipline the local OCXO, the reference frequency signal achieves both high long term stability (LTS) and short term stability (STS) properties. An algorithm, named phase abrupt change CFAR is presented to restrain the 1PPS phase abrupt change and keep loop locking. The experimental results indicate that this time and frequency synchronization method is effective and the time synchronization precision of the synchronization system can be improved from ±100 ns to ±25 ns. In addition, the phase noise is improved to 20 dB.
文摘This paper presents a fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver fabricated in a 0.13μm CMOS technology.The frequency synthesizer is implemented with an on-chip symmetric inductor and an on-chip loop filter.A capacitance multiplying approach is proposed in the on-chip loop filter design for area-saving consideration.Pulse-swallow topology with a multistage noise shaping△Σmodulator is adopted in the frequency divider design.The synthesizer generates local oscillating signals at 1571.328 MHz and 1568.259 MHz with a 16.368 MHz reference clock by working in integer and fractional modes.Measurement results show that the phase noise of the synthesizer achieves -91.3 dBc/Hz and -117 dBc/Hz out of band at 100 kHz and 1 MHz frequency offset,separately.The proposed frequency synthesizer consumes 8.6 mA from a 1.2 V power supply and occupies an area of 0.92 mm;.
文摘针对航空超导全张量系统中高精度的磁场测量需求以及应用特点,采用一种新型频率测量方法可以更精确的测量光泵频率,从而可以更为精确的测量磁场。文中介绍了利用GPS授时信号作为闸门时间来进行频率测量的方法,并重点阐述了其设计方法;然后给出了该方法在50~300 k Hz的测量结果,试验表明该方法明显优于普通晶振提供闸门时间的频率测量方法,且在该频率段内最大误差小于0.02 Hz,同时验证了该方法达到实用要求且解决了航空超导全张量系统中使用晶振造成的电磁兼容问题及系统小型化问题。